

K-12 Computer Science Standards
Revised 2017

The CSTA Standards Task Force

Deborah Seehorn, Co-Chair
North Carolina Department of Public Instruction (Retired)

Tammy Pirmann, Co-Chair
School District of Springfield Township

Todd Lash, Elementary Grades Team Lead
University of Illinois

Bryan Twarek, Middle Grades Team Lead
San Francisco Unified School District

Daniel Moix, High School Team Lead
Arkansas School for Mathematics, Sciences & Arts

Leticia Batista
Oxnard School District

Julia Bell
Walters State Community College

Chris Kuszmaul
Palo Alto High School

Dianne O'Grady-Cunniff
Charles County Public Schools

Minsoo Park
Countryside School

Lori Pollock
University of Delaware

Meg Ray
Cornell Tech

Dylan Ryder
The School at Columbia University

Vicky Sedgwick
St. Martin's Episcopal School

Grant Smith
Launch CS

Chinma Uche
Greater Hartford Academy of Mathematics and Science

This document includes all levels of the 2017 CSTA K-12 Computer Science Standards, which were created by
educators and released at the CSTA Annual Conference in July 2017. These standards are licensed under
a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.

The K–12 Computer Science Framework, led by the Association for Computing
Machinery, Code.org, Computer Science Teachers Association, Cyber Innovation Center, and National
Math and Science Initiative in partnership with states and districts, informed the development of this work.

About the CSTA K-12 Computer Science Standards
Computer science and the technologies it enables rest at the heart of our economy and the way we live our lives. To be well-educated
citizens in a computing-intensive world and to be prepared for careers in the 21st century, our students must have a clear
understanding of the principles and practices of computer science. The CSTA K–12 Computer Science Standards delineate a core set
of learning objectives designed to provide the foundation for a complete computer science curriculum and its implementation at the
K–12 level. To this end, the CSTA Standards:

• Introduce the fundamental concepts of computer science to all students, beginning at the elementary school level.

• Present computer science at the secondary school level in a way that can fulfill a computer science, math, or science graduation credit.

• Encourage schools to offer additional secondary-level computer science courses that will allow interested students to study facets of
computer science in more depth and prepare them for entry into the work force or college.

• Increase the availability of rigorous computer science for all students, especially those who are members of underrepresented groups.

The standards have been written by educators to be coherent and comprehensible to teachers, administrators, and policy makers.

Levels 1A, 1B, 2, and 3A are the computer science standards for ALL students. The Level 3B standards are intended for students who
wish to pursue the study of computer science in high school beyond what is required for all students (specialty or elective courses).

Connection to the K-12 Computer Science Framework
The K–12 Computer Science Framework (k12cs.org) provides overarching, high-level guidance per grade bands, while the standards
provide detailed, measurable student performance expectations. The Framework was considered as a primary input for the standards
development process.

The CSTA Standards Revision Task Force crafted standards by combining concept statements and practices from the Framework. It
also used descriptive material from the Framework when writing examples and clarifying statements to accompany the standards.

Concepts
1. Computing Systems
2. Networks and the Internet
3. Data and Analysis
4. Algorithms and Programming
5. Impacts of Computing

Practices
1. Fostering an Inclusive Computing

Culture
2. Collaborating Around Computing
3. Recognizing and Defining

Computational Problems

4. Developing and Using Abstractions
5. Creating Computational Artifacts
6. Testing and Refining Computational

Artifacts
7. Communicating About Computing

Level 1A: Grades K-2 (Ages 5-7)
Computing Systems
Identifier Standard Subconcept Practice

1A-CS-01 Select and operate appropriate software to perform a variety of tasks, and recognize that
users have different needs and preferences for the technology they use.

Devices 1.1

1A-CS-02 Use appropriate terminology in identifying and describing the function of common physical
components of computing systems (hardware).

Hardware &
Software

7.2

1A-CS-03 Describe basic hardware and software problems using accurate terminology. Troubleshooting 6.2, 7.2

Networks and the Internet
1A-NI-04 Explain what passwords are and why we use them, and use strong passwords to protect

devices and information from unauthorized access.
Cybersecurity 7.3

Data and Analysis
1A-DA-05 Store, copy, search, retrieve, modify, and delete information using a computing device and

define the information stored as data.
Storage 4.2

1A-DA-06 Collect and present the same data in various visual formats. Collection
Visualization &
Transformation

7.1, 4.4

1A-DA-07 Identify and describe patterns in data visualizations, such as charts or graphs, to make
predictions.

Inference &
Models

4.1

	
Algorithms and Programming
1A-AP-08 Model daily processes by creating and following algorithms (sets of step-by-step

instructions) to complete tasks.
Algorithms 4.4

1A-AP-09 Model the way programs store and manipulate data by using numbers or other symbols to
represent information.

Variables 4.4

1A-AP-10 Develop programs with sequences and simple loops, to express ideas or address a
problem.

Control 5.2

1A-AP-11 Decompose (break down) the steps needed to solve a problem into a precise sequence of
instructions.

Modularity 3.2

1A-AP-12 Develop plans that describe a program’s sequence of events, goals, and expected
outcomes.

Program
Development

5.1, 7.2

1A-AP-13 Give attribution when using the ideas and creations of others while developing programs. Program
Development

7.3

1A-AP-14 Debug (identify and fix) errors in an algorithm or program that includes sequences and
simple loops.

Program
Development

6.2

1A-AP-15 Using correct terminology, describe steps taken and choices made during the iterative
process of program development.

Program
Development

7.2

	
Impacts of Computing
1A-IC-16 Compare how people live and work before and after the implementation or adoption of

new computing technology.
Culture 7

1A-IC-17 Work respectfully and responsibly with others online. Social
Interactions

2.1

1A-IC-18 Keep login information private, and log off of devices appropriately. Safety Law &
Ethics

7.3

	

Level 1B: Grades 3-5 (Ages 8-11)
Computing Systems
Identifier Standard Subconcept Practice

1B-CS-01 Describe how internal and external parts of computing devices function to form a system. Devices 7.2

1B-CS-02 Model how computer hardware and software work together as a system to accomplish
tasks.

Hardware &
Software

4.4

1B-CS-03 Determine potential solutions to solve simple hardware and software problems using
common troubleshooting strategies.

Troubleshooting 6.2

Networks and the Internet
1B-NI-04 Model how information is broken down into smaller pieces, transmitted as packets through

multiple devices over networks and the Internet, and reassembled at the destination.
Network
Communication
& Organization

4.4

1B-NI-05 Discuss real-world cybersecurity problems and how personal information can be protected. Cybersecurity 3.1

Data and Analysis
1B-DA-06 Organize and present collected data visually to highlight relationships and support a claim. Collection

Visualization &
Transformation

7.1

1B-DA-07 Use data to highlight or propose cause-and-effect relationships, predict outcomes, or
communicate an idea.

Inference &
Models

7.1

Algorithms and Programming
1B-AP-08 Compare and refine multiple algorithms for the same task and determine which is the most

appropriate.
Algorithms 6.3, 3.3

1B-AP-09 Create programs that use variables to store and modify data. Variables 5.2

1B-AP-10 Create programs that include sequences, events, loops, and conditionals. Control 5.2

1B-AP-11 Decompose (break down) problems into smaller, manageable subproblems to facilitate the
program development process.

Modularity 3.2

1B-AP-12 Modify, remix, or incorporate portions of an existing program into one's own work, to
develop something new or add more advanced features.

Modularity 5.3

1B-AP-13 Use an iterative process to plan the development of a program by including others'
perspectives and considering user preferences.

Program
Development

1.1, 5.1

1B-AP-14 Observe intellectual property rights and give appropriate attribution when creating or
remixing programs.

Program
Development

5.2, 7.3

1B-AP-15 Test and debug (identify and fix errors) a program or algorithm to ensure it runs as
intended.

Program
Development

6.1, 6.2

1B-AP-16 Take on varying roles, with teacher guidance, when collaborating with peers during the
design, implementation, and review stages of program development.

Program
Development

2.2

1B-AP-17 Describe choices made during program development using code comments, presentations,
and demonstrations.

Program
Development

7.2

Impacts of Computing
1B-IC-18 Discuss computing technologies that have changed the world, and express how those

technologies influence, and are influenced by, cultural practices.
Culture 3.1

1B-IC-19 Brainstorm ways to improve the accessibility and usability of technology products for the
diverse needs and wants of users.

Culture 1.2

1B-IC-20 Seek diverse perspectives for the purpose of improving computational artifacts. Social
Interactions

1.1

1B-IC-21 Use public domain or creative commons media, and refrain from copying or using material
created by others without permission.

Safety Law &
Ethics

7.3

Level 2: Grades 6-8 (Ages 11-14)
Computing Systems
Identifier Standard Subconcept Practice

2-CS-01 Recommend improvements to the design of computing devices, based on an analysis of
how users interact with the devices.

Devices 3.3

2-CS-02 Design projects that combine hardware and software components to collect and exchange
data.

Hardware &
Software

5.1

2-CS-03 Systematically identify and fix problems with computing devices and their components. Troubleshooting 6.2

Networks and the Internet
2-NI-04 Model the role of protocols in transmitting data across networks and the Internet. Network

Communication
& Organization

4.4

2-NI-05 Explain how physical and digital security measures protect electronic information. Cybersecurity 7.2

2-NI-06 Apply multiple methods of encryption to model the secure transmission of information. Cybersecurity 4.4

Data and Analysis
2-DA-07 Represent data using multiple encoding schemes. Storage 4

2-DA-08 Collect data using computational tools and transform the data to make it more useful and
reliable.

Collection
Visualization &
Transformation

6.3

2-DA-09 Refine computational models based on the data they have generated. Inference &
Models

5.3, 4.4

Algorithms and Programming
2-AP-10 Use flowcharts and/or pseudocode to address complex problems as algorithms. Algorithms 4.4, 4.1

2-AP-11 Create clearly named variables that represent different data types and perform operations
on their values.

Variables 5.1, 5.2

2-AP-12 Design and iteratively develop programs that combine control structures, including nested
loops and compound conditionals.

Control 5.1, 5.2

2-AP-13 Decompose problems and subproblems into parts to facilitate the design, implementation,
and review of programs.

Modularity 3.2

2-AP-14 Create procedures with parameters to organize code and make it easier to reuse. Modularity 4.1, 4.3

2-AP-15 Seek and incorporate feedback from team members and users to refine a solution that
meets user needs.

Program
Development

2.3, 1.1

2-AP-16 Incorporate existing code, media, and libraries into original programs, and give attribution. Program
Development

4.2, 5.2,
7.3

2-AP-17 Systematically test and refine programs using a range of test cases. Program
Development

6.1

2-AP-18 Distribute tasks and maintain a project timeline when collaboratively developing
computational artifacts.

Program
Development

2.2

2-AP-19 Document programs in order to make them easier to follow, test, and debug. Program
Development

7.2

	
Impacts of Computing
2-IC-20 Compare tradeoffs associated with computing technologies that affect people's everyday

activities and career options.
Culture 7.2

2-IC-21 Discuss issues of bias and accessibility in the design of existing technologies. Culture 1.2

2-IC-22 Collaborate with many contributors through strategies such as crowdsourcing or surveys
when creating a computational artifact.

Social
Interactions

2.4, 5.2

2-IC-23 Describe tradeoffs between allowing information to be public and keeping information
private and secure.

Safety Law &
Ethics

7.2

Level 3A: Grades 9-10 (Ages 14-16)
Computing Systems
Identifier Standard Subconcept Practice

3A-CS-01 Explain how abstractions hide the underlying implementation details of computing systems
embedded in everyday objects.

Devices 4.1

3A-CS-02 Compare levels of abstraction and interactions between application software, system
software, and hardware layers.

Hardware &
Software

4.1

3A-CS-03 Develop guidelines that convey systematic troubleshooting strategies that others can use to
identify and fix errors.

Troubleshooting 6.2

Networks and the Internet
3A-NI-04 Evaluate the scalability and reliability of networks, by describing the relationship between

routers, switches, servers, topology, and addressing.
Network
Communication
& Organization

4.1

3A-NI-05 Give examples to illustrate how sensitive data can be affected by malware and other
attacks.

Network
Communication
& Organization

7.2

3A-NI-06 Recommend security measures to address various scenarios based on factors such as
efficiency, feasibility, and ethical impacts.

Cybersecurity 3.3

3A-NI-07 Compare various security measures, considering tradeoffs between the usability and
security of a computing system.

Network
Communication
& Organization

6.3

3A-NI-08 Explain tradeoffs when selecting and implementing cybersecurity recommendations. Cybersecurity 7.2

Data and Analysis
3A-DA-09 Translate between different bit representations of real-world phenomena, such as

characters, numbers, and images.
Storage 4.1

3A-DA-10 Evaluate the tradeoffs in how data elements are organized and where data is stored. Storage 3.3

3A-DA-11 Create interactive data visualizations using software tools to help others better understand
real-world phenomena.

Collection
Visualization &
Transformation

4.4

3A-DA-12 Create computational models that represent the relationships among different elements of
data collected from a phenomenon or process.

Inference &
Models

4.4

Algorithms and Programming
3A-AP-13 Create prototypes that use algorithms to solve computational problems by leveraging prior

student knowledge and personal interests.
Algorithms 5.2

3A-AP-14 Use lists to simplify solutions, generalizing computational problems instead of repeatedly
using simple variables.

Variables 4.1

3A-AP-15 Justify the selection of specific control structures when tradeoffs involve implementation,
readability, and program performance, and explain the benefits and drawbacks of choices
made.

Control 5.2

3A-AP-16 Design and iteratively develop computational artifacts for practical intent, personal
expression, or to address a societal issue by using events to initiate instructions.

Control 5.2

3A-AP-17 Decompose problems into smaller components through systematic analysis, using
constructs such as procedures, modules, and/or objects.

Control 3.2

3A-AP-18 Create artifacts by using procedures within a program, combinations of data and
procedures, or independent but interrelated programs.

Modularity 5.2

3A-AP-19 Systematically design and develop programs for broad audiences by incorporating
feedback from users.

Modularity 5.1

3A-AP-20 Evaluate licenses that limit or restrict use of computational artifacts when using resources
such as libraries.

Program
Development

7.3

3A-AP-21 Evaluate and refine computational artifacts to make them more usable and accessible. Program
Development

6.3

3A-AP-22 Design and develop computational artifacts working in team roles using collaborative tools. Program
Development

2.4

3A-AP-23 Document design decisions using text, graphics, presentations, and/or demonstrations in
the development of complex programs.

Program
Development

7.2

	
Impacts of Computing
3A-IC-24 Evaluate the ways computing impacts personal, ethical, social, economic, and cultural

practices.
Culture 1.2

3A-IC-25 Test and refine computational artifacts to reduce bias and equity deficits. Culture 1.2

3A-IC-26 Demonstrate ways a given algorithm applies to problems across disciplines. Culture 3.1

3A-IC-27 Use tools and methods for collaboration on a project to increase connectivity of people in
different cultures and career fields.

Social
Interactions

2.4

3A-IC-28 Explain the beneficial and harmful effects that intellectual property laws can have on
innovation.

Safety Law &
Ethics

7.3

3A-IC-29 Explain the privacy concerns related to the collection and generation of data through
automated processes that may not be evident to users.

Safety Law &
Ethics

7.2

3A-IC-30 Evaluate the social and economic implications of privacy in the context of safety, law, or
ethics.

Safety Law &
Ethics

7.3

Level 3B: Grades 11-12 (Ages 16-18)
Computing Systems
Identifier Standard Subconcept Practice

3B-CS-01 Categorize the roles of operating system software. Hardware &
Software

7.2

3B-CS-02 Illustrate ways computing systems implement logic, input, and output through hardware
components.

Troubleshooting 7.2

Networks and the Internet
3B-NI-03 Describe the issues that impact network functionality (e.g., bandwidth, load, delay,

topology).
Network
Communication
& Organization

7.2

3B-NI-04 Compare ways software developers protect devices and information from unauthorized
access.

Cybersecurity 7.2

Data and Analysis
3B-DA-05 Use data analysis tools and techniques to identify patterns in data representing complex

systems.
Collection
Visualization &
Transformation

4.1

3B-DA-06 Select data collection tools and techniques to generate data sets that support a claim or
communicate information.

Collection
Visualization &
Transformation

7.2

3B-DA-07 Evaluate the ability of models and simulations to test and support the refinement of
hypotheses.

Inference &
Models

4.4

Algorithms and Programming
3B-AP-08 Describe how artificial intelligence drives many software and physical systems. Algorithms 7.2

3B-AP-09 Implement an artificial intelligence algorithm to play a game against a human opponent or
solve a problem.

Algorithms 5.3

3B-AP-10 Use and adapt classic algorithms to solve computational problems. Algorithms 4.2

3B-AP-11 Evaluate algorithms in terms of their efficiency, correctness, and clarity. Algorithms 4.2

3B-AP-12 Compare and contrast fundamental data structures and their uses. Variables 4.2

3B-AP-13 Illustrate the flow of execution of a recursive algorithm. Control 3.2

3B-AP-14 Construct solutions to problems using student-created components, such as procedures,
modules and/or objects.

Modularity 5.2

3B-AP-15 Analyze a large-scale computational problem and identify generalizable patterns that can
be applied to a solution.

Modularity 4.1

3B-AP-16 Demonstrate code reuse by creating programming solutions using libraries and APIs. Modularity 5.3

3B-AP-17 Plan and develop programs for broad audiences using a software life cycle process. Program
Development

5.1

3B-AP-18 Explain security issues that might lead to compromised computer programs. Program
Development

7.2

3B-AP-19 Develop programs for multiple computing platforms. Program
Development

5.2

3B-AP-20 Use version control systems, integrated development environments (IDEs), and
collaborative tools and practices (code documentation) in a group software project.

Program
Development

2.4

3B-AP-21 Develop and use a series of test cases to verify that a program performs according to its
design specifications.

Program
Development

6.1

3B-AP-22 Modify an existing program to add additional functionality and discuss intended and
unintended implications (e.g., breaking other functionality).

Program
Development

5.3

3B-AP-23 Evaluate key qualities of a program through a process such as a code review. Program
Development

6.3

3B-AP-24 Compare multiple programming languages and discuss how their features make them
suitable for solving different types of problems.

Program
Development

7.2

	
Impacts of Computing
3B-IC-25 Evaluate computational artifacts to maximize their beneficial effects and minimize harmful

effects on society.
Culture 6.1, 1.2

3B-IC-26 Evaluate the impact of equity, access, and influence on the distribution of computing
resources in a global society.

Culture 1.2

3B-IC-27 Predict how computational innovations that have revolutionized aspects of our culture
might evolve.

Culture 7.2

3B-IC-28 Debate laws and regulations that impact the development and use of software. Safety Law &
Ethics

3.3, 7.3

	
	

The CSTA K-12 Computer Science Standards are created and maintained by educator members of
the Computer Science Teachers Association (CSTA). The Association for Computing Machinery
(ACM) founded CSTA as part of its commitment to K-12 computer science education.

