
1

Revised PK–12 Computer
Science Standards
DRAFT 3.0

SUGGESTED CITATION: Computer Science Teachers Association. (2025). Revised PK–12

computer science standards: Draft 3.0. https://csteachers.org/k12standards/revision/

To access a progression view of the foundational standards, see:

https://csteachers.org/PK-12-Foundational-Standards-Draft-3.0-Progression-Chart

© 2025 Computer Science Teachers Association (CSTA).

https://csteachers.org/k12standards/revision/
https://csteachers.org/PK-12-Foundational-Standards-Draft-3.0-Progression-Chart

Revised PK–12 Computer Science Standards: Draft 3.0	 Table of Contents

2© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Table of Contents

Vision………………………………………………………………………………… 4

Every Student Prepared for a World Powered by Computing	 4

Defining Computer Science……………………………………………… 5

About the CSTA PK–12 Standards…………………………………… 6

Intended Uses	 6

Revision Overview… ………………………………………………………… 7

People	 7

Process	 8

Priorities for the 2026 CSTA PK–12 Standards	 9

AI is Part of CS	 11

A Sociotechnical Approach to Ethics and Impacts of Computing	 12

Additional Context for Reviewers………………………………………13

Navigating the Standards… ………………………………………………14

Foundational Standards	 14

Specialty Standards	 15

Components of a Standard… ……………………………………………16

Example of All Components for a Security Standard	 17

Concepts……………………………………………………………………………19

Algorithms & Design	 19

Programming	 20

Data & Analysis	 21

Systems & Security	 22

Computing & Society	 23

Pillars & Practices…………………………………………………………… 24

Ethics & Social Responsibility	 24

Inclusive Collaboration	 25

Computational Thinking	 26

Human-Centered Design	 27

Dispositions… ………………………………………………………………… 28

What Are Dispositions?	 28

Foundational Standards for PK–12… ……………………………… 29

Naming Conventions for Foundational Standards	 29

Algorithms & Design	 30

Programming	 50

Data & Analysis	 75

Systems & Security	 96

Computing & Society	 120

Revised PK–12 Computer Science Standards: Draft 3.0	 Table of Contents

3© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Specialty Standards for High School……………………………… 143

What are Specialty Standards?	 143

How do Specialty Standards Differ From

Foundational Standards?	 143

How to Implement Specialty Standards	 144

The Relationship Between Specialty Standards

and Career and Technical Education (CTE)	 146

Naming Conventions for Specialty Standards 	 146

Software Development	 147

Cybersecurity	 160

Artificial Intelligence	 177

Physical Computing	 193

Data Science	 204

Game Development	 230

X + CS	 243

References……………………………………………………………………… 247

Revised PK–12 Computer Science Standards: Draft 3.0	 Introduction

4© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Vision

Every Student Prepared for a
World Powered by Computing

Today’s students will face pervasive
questions that require foundational
knowledge of computer science (CS)
for them to answer. They will, for
example, need to shape their views on
the regulation of artificial intelligence,
have the ability to automate routine
tasks, and analyze and visualize data in
a variety of contexts. These situations
illustrate the need for early, universal
CS education, which will only become
more important as society continues
to increasingly rely on computing
technologies.

I don’t know if my

personal data is safe

if I use this sleep app

— could I create my

own app?

An ad just

recommended

that I try that

bakery — is

something

tracking my

location?

CONTACT US

Tracking data for my

soccer team takes a

lot of time — should I

automate the process?

0-0
1-1

2-1
0-1

0-0
1-1

2-1
0-1

Should I vote for

the candidate

who promises to

regulate AI?

VOTE

Every student
prepared for a

world powered
by computing

In a world increasingly powered by computing, students of all identities and chosen career paths need quality computer science education to
become informed citizens and confident creators. Our vision for PK–12 CS education is to ensure:

•	 All students are engaged and supported in learning CS, including its impacts on individuals, societies, cultures, democracies, and policies.

•	 Policies, pedagogies, and practices support all students learning CS.

•	 Standards align with the current and future needs for learning CS.

Revised PK–12 Computer Science Standards: Draft 3.0	 Introduction

5© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Defining Computer Science

Computer science is the study and creative practice of how people use data, algorithms,
and computing systems to solve problems, make discoveries, and express ideas.

Computer science connects scientific reasoning with creative expression. It helps people make
sense of and shape a world increasingly powered by computing. As a discipline, computer
science brings together algorithms, data, systems, and design to help learners ask questions,
explore patterns, model complex ideas, and build solutions that matter in their communities. It
is both a science and an art: a field grounded in computational thinking and driven by human
curiosity, imagination, and purpose.

As a field, computer science is constantly evolving. It includes foundational ideas—such
as algorithms, programming, and systems—that enable people to represent and process
information, as well as specialty areas like artificial intelligence, data science, cybersecurity, and
physical computing. Across all of these, students examine how computing interacts with and
evolves alongside society, considering issues of ethics, equity, and sustainability.

The CSTA PK–12 Computer Science Standards are designed to make this vision concrete. They
organize learning through five concepts (Algorithms & Design, Programming, Data & Analysis,
Systems & Security, and Computing & Society) supported by four cross-cutting pillars (Ethics &
Social Responsibility, Inclusive Collaboration, Computational Thinking, and Human-Centered
Design). Together, these structures emphasize that computer science is not only about
understanding how technologies work but also about how people design, evaluate, and use
them to express ideas, make discoveries, and solve problems across a variety of disciplines and
contexts.

Through this learning, students develop dispositions (habits of mind) that support lifelong
learning and creating with computing (curiosity, creativity, persistence, critical thinking,
reflectiveness, resourcefulness, and a sense of belonging). They learn that not only is computer
science a powerful medium for expression and innovation, but also a shared responsibility for
shaping communities. In a world increasingly powered by computing, computer science
empowers all learners as critical consumers, responsible creators, and informed participants
in society.

The following standards translate this vision into specific learning outcomes for all students
across all grade levels and contexts.

Computer Science Is:

•	 a scientific and creative discipline focused
on understanding and designing algorithms,
data practices, and computing systems.

•	 the application of computational thinking
to develop both rules-based and data-
driven solutions across a variety of
disciplines and contexts.

•	 a collaborative discipline, where learners
plan, communicate, test, and refine ideas
together to design solutions that serve
diverse people and communities.

•	 an ethical and human-centered practice,
where people examine impacts, identify
potential harms and benefits, and design
responsibly.

Computer Science Is Not:

•	 focused on keyboarding or using
technology such as word processors, slide
decks, spreadsheets, or generative AI tools.
These tools are used in CS instruction but
also across other subject areas.

•	 limited to coding or programming.
Programming is an essential part of CS, but
CS is far broader.

•	 limited to any one career path. CS
empowers creativity, research, problem
solving, and innovation across every
field—from the sciences and arts to health,
business, and public service.

Revised PK–12 Computer Science Standards: Draft 3.0	 Introduction

6© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

About the CSTA PK–12 Standards

The CSTA PK–12 Computer Science Standards define the essential
knowledge, skills, and dispositions to prepare all students for a world
powered by computing. Specifically, the Standards delineate coherent
progressions of student learning outcomes from pre-kindergarten to
grade 12. Together, they form the strong foundation for a rigorous
and comprehensive computer science (CS) curriculum that is driven
by research and informed by teacher practice.

Written by teachers for teachers, the Standards offer flexibility and
guidance to support state and local adaptation, while also promoting
instructional coherence across the U.S. and internationally. Grounded
in research and equity, these standards center creativity, ethics, data,
and human-centered design. They integrate emerging technologies
like artificial intelligence while reinforcing foundational computing
concepts and inclusive practices that make computer science
relevant for every learner. The Standards are a primary resource for
state and local education agencies when determining what PK–12
students need to know and be able to do in CS. Widespread adoption
impacts millions of students and promotes consistency in state
policy, curriculum development, teacher certification, and teacher
preparation and professional development across the U.S. and
beyond.

Intended Uses

The 2026 CSTA PK–12 Standards are designed for broad adoption
and implementation. While many in the CS education community will
find value in the Standards, likely use cases for the standards are:

•	 PK–12 CS teachers will use the Standards to design rigorous and
relevant learning experiences for all students.

•	 Other PK–12 teachers will use the Standards to plan how they
can integrate computer science into other subject areas.

•	 PK–12 administrators will use the Standards to establish
and support district- and school-level policies that enable
implementation and increase participation.

•	 Curriculum providers will use the Standards to develop new,
or refine existing, curriculum and associated tools that guide
student learning.

•	 PD providers will use the Standards to design in-service
professional learning programs that prepare teachers to
effectively teach CS across a variety of contexts.

•	 Schools of education will use the Standards to ensure
pre-service teachers have appropriate knowledge and skills to
teach foundational CS to their future students.

•	 State leaders will use the Standards to inform the adoption of
state CS standards, teacher certification, and other CS education
policy decisions.

Revised PK–12 Computer Science Standards: Draft 3.0	 Introduction

7© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Revision Overview

The CSTA PK–12 Standards, last published in 2017, required an update
due to increased CS implementation in PK–12 schools, continuously
evolving research, and recent technological advancements. A three-
year revision process began with research in fall 2023, followed by
the formal writing process in fall 2024.

CSTA defined the following values to guide the revision process and
provide a lens for reflecting on and refining project outputs:

Equity-centered: Promotes broad and equitable access,
participation, and experiences in CS education among all
students.

Community-generated: Meets the needs of the
community, including PK–12 educators, postsecondary
institutions, students, parents, and industry.

Future-oriented: Anticipates future needs of current
learners, and prepares them for a future that is increasingly
reliant on computing.

Grounded in research: Reflects the evolving body of
knowledge of how students learn CS.

Flexible in implementation: Considers multiple pathways
for meeting individual needs of learners, including regional,
cultural, ability, social, and economic factors.

People

The standards revision process involved the coordinated efforts of
three main groups.

•	 Standards Writing Team: Included 24 individuals representing
18 states that serve in a variety of roles including CS teacher
(44%), state CS specialist (16%), teacher preparation (32%), and
researcher (8%). Collectively, the writing team had over 400 years
of teaching experience, more than 250 of those years specifically
teaching CS. Writers took the lead on drafting standards and
made key decisions throughout the writing process.

•	 Advisory Board: Composed of approximately 70 accomplished
individuals from across the CS education community including
state CS supervisors, district leaders, curriculum and PD
providers, nonprofit leaders, international partners, researchers,
school of education faculty, and industry partners. Advisors
provided additional insight and perspective that helps to ensure a
useful, viable, and accessible final product.

•	 Asynchronous Reviewers: Over 500 asynchronous reviewers
validated directionality and provided feedback at key intervals to

inform the writing process.

Revised PK–12 Computer Science Standards: Draft 3.0	 Introduction

8© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Process

The standards revision process was organized around three distinct and
overlapping phases: Research, Writing, and Implementation.

Research

The research phase began with the Reimagining CS Pathways project,
which aimed to answer two research questions:

1.	 What CS content is essential for all high school graduates to know?

2.	 What pathways should exist to continue learning beyond the
foundational high school content?

This project laid the foundation for identifying priorities for the updated
standards and executing additional research efforts to inform those
priorities. Additional research efforts intended to inform the structure and
content of updated standards included:

•	 Comparing state and international CS standards

•	 Conducting literature reviews on K–12 algorithms, programming, data
and analysis, cybersecurity, and the history of computing

•	 Comparing the 2017 CSTA Standards to other sets of standards and
frameworks (in CS-related and non-CS areas)

•	 Identifying AI Priorities for All K–12 Students

•	 Amplifying Social Impacts of Computing Standards

Writing

The writing phase kicked off in September 2024 and included six
in-person convenings and regular synchronous meetings with the writing
team. Writers primarily operated in grade band teams when engaging in
drafting sprints; however, concept teams and other cross-grade band
groupings also worked to ensure logical progressions across grade levels.
Advisors, researchers, and technical writers provided just-in-time feedback
throughout the writing process to assist writers in making key decisions.

High-Level Writing Timeline

Time Period Steps Taken

Fall 2024 •	 Determined organizational structure of
standards and drafted all standards within the
Systems & Security concept.

Winter 2024–25 •	 Released Draft 1.0 of standards including one
fully drafted concept (Systems & Security).

•	 Collected feedback on organizational structure
and general approach to writing.

Spring 2025 •	 Drafted standards in the remaining four concepts.

Summer 2025 •	 Released Draft 2.0 of standards including fully
drafted progressions across all five concepts.

•	 Collected feedback on coherence and clarity of
progressions.

•	 Refined standards based on feedback.

Fall 2025 •	 Drafted clarification for each standard including
boundary statements, practice alignment,
implementation examples, and interdisciplinary
connections.

Winter 2025–26 •	 Released Draft 3.0 of standards including
boundary statements and practice alignment.

•	 Collected feedback on clarity of individual
standards and associated boundary statements
and practice alignments.

•	 Refined standards and clarifications based on
feedback.

Spring 2026 •	 Finalized standards and clarifications.

•	 Planned web and print designs.

Summer 2026 •	 Published the 2026 CSTA PK–12 Standards.

Revised PK–12 Computer Science Standards: Draft 3.0	 Introduction

9© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Implementation

Implementation of the updated CSTA PK–12 Standards will begin
with the official launch of the standards in summer of 2026. This
phase is focused on supporting teachers, teacher leaders, curriculum
and professional development providers, and state departments
of education to strategize, create structures, and develop student
learning experiences that align with the standards.

Priorities for the 2026 CSTA PK–12 Standards

Enduring Priorities

Foundational ideas in CS that remain a priority in the updated
standards include Algorithms, Programming, Data & Analysis, and
Computing Systems.

Algorithms

Algorithms receive a heightened emphasis in the 2026 CSTA PK–12
Standards as compared to previous iterations due to the profound
impact of emerging technologies such as generative AI on society.
To reflect this, Algorithms & Design is defined as a distinct concept,
as opposed to being combined with Programming previously.
The elevated position of Algorithms is underscored by designating
Computational Thinking as a crosscutting pillar to be woven
throughout instruction.

Programming

Programming is still prioritized, and the value of learning to program
remains a core aspect of foundational CS. However, the updated
standards represent a shift away from purely generating code
to a balanced approach inclusive of developing skills in reading,
evaluating, modifying, and debugging code.

Data & Analysis

Content related to data and its analysis is also a priority, reflecting
the increased prevalence of data in daily aspects of life as well as
the vast amount of data upon which emerging AI technologies are
built. This trend also acknowledges data science as a burgeoning and
increasingly important field with strong foundations in CS. Data &
Analysis is one of five concepts to reflect this prioritization.

Computing Systems and Security

The 2017 CSTA K–12 Standards included (1) Computing Systems and
(2) Networks and the Internet as two distinct concepts. In an effort
to streamline content and acknowledge the interconnectedness
of these two areas, they are represented by a singular concept
called Systems & Security in the updated standards. This also draws
attention to the increasing importance of security in the safe and
responsible implementation of CS.

Revised PK–12 Computer Science Standards: Draft 3.0	 Introduction

10© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Emerging Priorities

In light of recent research and technological innovation, the following
areas are either new in this iteration of the CSTA standards or have an
elevated presence as compared to previous versions:

History of Computing

To fully grasp their sociotechnical world, students must explore the
evolution of computing technologies, from early developments to
modern innovations, and recognize the key contributors. This priority
area is integrated within the Computing & Society concept.

Career Exploration

Computing is foundational to nearly every industry and field of study.
As such, it is critical for students to connect computing to their
personal interests and career goals. Career-related standards are
included in the Computing & Society concept.

Artificial Intelligence and other Emerging Technologies

In an effort to ensure that the 2026 CSTA PK–12 Standards can
guide the implementation of a relevant and comprehensive CS
education for the next eight to 10 years, the standards necessarily
cover key current technological innovations such as foundational
aspects of artificial intelligence. In anticipation of future technological
innovations, certain standards are intentionally designed to allow
standards implementation to evolve as the field of computer science
evolves. In this way, the standards accommodate learning around
both current and future tech. AI content is integrated throughout
appropriate concepts in the standards, and a distinct emerging
technologies progression is also included in the Computing & Society
concept, which creates space for additional learning around AI and
other emerging technologies that may or may not be in existence
today.

Inclusive Collaboration

The prioritization of inclusive collaboration as a pillar highlights equity
as a core value. It emphasizes key skills like effective communication,
collaborative problem-solving, and efficiently navigating computing
projects. The practices that define inclusive collaboration are
integrated across all CS instruction.

Human-Centered Design

Human-centered design principles are crucial for the ethical
development of computing technologies. The level to which a variety
of potential user needs, abilities, and contexts are considered in
the design process can either remedy or exacerbate equity issues
in implementation and profoundly impact the benefits and harms
experienced by users. Like Inclusive Collaboration, these practices are
woven throughout all CS concepts.

Ethics and Impacts

Perhaps the most critical priority in the updated standards, ethical
practices and impacts of computing content can be found
throughout the 2026 CSTA PK–12 Standards. The Ethics and Social
Responsibility pillar promotes practices such as using computing for
social good and respecting other creators. Impact-related content
can be found in multiple subconcepts distributed throughout the
standards including Impacts of Algorithms, Impacts of Computing
Systems, and Impacts of Data Science. This emphasis aims to
cultivate computer science learners who are responsible creators and
critical consumers of technology, aware of its impact on their lives
and communities.

Specific details related to the philosophy and approach to AI and
Ethics in the standards are detailed below.

Revised PK–12 Computer Science Standards: Draft 3.0	 Introduction

11© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

AI is Part of CS

AI use and interaction is increasingly part of students’ day-to-day
lives, yet most cannot explain how these systems work, why they fail,
or how their data shapes the AI shaping their lives. This knowledge
gap will continue to widen if steps are not taken to ensure students
have opportunities to learn both with and about AI. CS classrooms
are a natural fit for students to learn the technical underpinnings of
AI—how it is created, how it makes decisions, and how it impacts
society. Including AI learning outcomes as part of a foundational
computer science learning experience bolsters students’ abilities
to become critical consumers, responsible creators, and informed
participants in society.

Critical Consumers: From the media they consume to the jobs they
pursue to their doctor’s visits, students will encounter AI in daily
routines and activities. They must recognize when AI is being used,
question whether it is appropriate for a task, evaluate if outputs are
trustworthy, and assess whether decisions are fair.

Responsible Creators: Regardless of career, most students will likely
use AI tools in some professional capacity. They need to understand
when human judgment should override AI, recognize limitations and
harms, and apply ethical frameworks to make decisions.

Informed Participants in Society: Students will need to consider
the real benefits and risks of AI in their communities, when and
how to leverage outputs from AI in daily tasks, and what the future
might look like as AI continues to permeate society. They need to
understand how bias in training data creates biased outcomes, why
AI makes mistakes, who bears responsibility, and the environmental
costs of AI systems.

Without knowledge of how AI works, students cannot fully and
meaningfully participate in evaluating consequential technologies
nor shape their future iterations.

When students learn and understand that AI is created by humans,
trained on human-collected data, and reflects human choices, their
understanding of a world increasingly powered by computing shifts:

•	 They understand mistakes aren’t mysterious failures but
predictable consequences of training data gaps

•	 They recognize bias stems from human choices about data and
design

•	 They see themselves as potential shapers of AI’s future, rather
than passive recipients

AI in the CSTA PK–12 Standards

Because AI technologies are built upon fundamental principles of
computer science, the standards writing team decided to integrate AI
content throughout the organizational structure rather than define
AI as its own concept. AI content in the standards serves two primary
purposes: 1) to help students understand how AI works and 2) to
encourage students to grapple with real impacts and ethical issues
related to AI technologies, their creation, and their deployment.
Specifically, AI content is represented across the standards in the
following ways:

•	 Algorithms & Design: Rule-based vs. data driven approaches,
machine learning, and societal impacts (e.g., bias)

•	 Programming: Reading and evaluating code generated by AI

•	 Data & Analysis: data fluency and data analysis

•	 Systems & Security: security implications and environmental
impacts

•	 Computing & Society: history of computing, humans and AI, and
emerging technologies

PK–12 students deserve to understand the systems shaping their
futures, and learning experiences aligned with the AI content included
in the 2026 CSTA PK–12 standards will help them to do so.

Revised PK–12 Computer Science Standards: Draft 3.0	 Introduction

12© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

A Sociotechnical Approach to Ethics and Impacts of
Computing

As computing becomes woven into every aspect of our lives—from
the tools we use to communicate to the systems that shape our
opportunities—students need more than technical skills. They need
to understand how computing and society shape one another. This
understanding lies at the heart of the revised CSTA PK–12 Computer
Science Standards: preparing all students not only to use and build
technology, but to question, imagine, and influence its role in the
world.

Moving Beyond Techno-Myths

Too often, we hear that technology is neutral, inevitable, or outside
of human control. These “techno-myths” suggest that computing
systems simply evolve on their own. But every technology reflects
human decisions—by designers, companies, and communities—and
carries the values and power structures of those decisions.

Computer science education can help students replace myths with
sociotechnical understanding: the recognition that technology and
society are inseparable. Students learn that computing systems are
not just technical artifacts but products of cultural, political, and
economic choices. This prepares them to ask deeper questions, like:
Who benefits from this technology? Whose needs are ignored? What
values are embedded in its design?

Understanding and Addressing Computing’s Harms

When we talk about “ethics in computing,” it is easy to focus only
on isolated examples of bad actors or unintended consequences. A
sociotechnical approach encourages students to see patterns and
systems—how inequities, biases, or environmental impacts arise from
both the technology itself and the contexts in which it is built and
used.

Students can explore real-world issues such as biased algorithms
in hiring, surveillance in schools, or environmental effects of
data centers. They examine types of harm (like discrimination or
misinformation), mechanisms (how biased data or business incentives
drive those harms), and mitigation strategies that range from
responsible design to policy and advocacy. In doing so, students
develop agency—seeing that harms are not inevitable and that
collective action can shape better futures.

Doing, Not Just Discussing: Ethical and Critical Computing
Practices

Understanding is only half the goal; the other half is practice. Ethical,
responsible, and critical computing becomes meaningful when
students do it. This means engaging in a range of practices:

•	 Ethical design: creating technologies that reflect values like
fairness, privacy, and accessibility.

•	 Critical inquiry: investigating how technologies impact people
and the environment—and whether certain technologies should
even exist.

•	 Hopeful reimagining: envisioning alternative, more just futures
for technology.

•	 Advocacy: recognizing when to push back, speak up, or refuse
technologies that cause harm.

•	 Responsible use: making thoughtful decisions about personal
and communal use of technology.

These practices move computing education beyond coding for its
own sake, helping students connect computing to real-world issues
they care about.

Revised PK–12 Computer Science Standards: Draft 3.0	 Introduction

13© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Ethics as Dialogue, Not Doctrine

There is no single “right” answer to what is ethical in computing.
Instead of prescribing moral rules, educators can help students
navigate competing perspectives and values. Some classrooms
might focus on identifying harms and responsibilities; others may
examine the values built into technologies or explore multiple ethical
frameworks. Across these approaches, students learn to reason,
debate, and deliberate—to recognize that ethical computing is a
process of ongoing reflection and dialogue.

Why This Matters

Reimagining computer science education through this sociotechnical
lens does not make CS less rigorous—it makes it more relevant,
engaging, and empowering. Students see computing not as a distant
or predetermined field, but as something they can shape. They learn
that coding and critical thinking go hand in hand, and that the most
powerful computing education is one that connects knowledge to
justice, creativity, and community.

This approach invites all educators—not just computer scientists—to
join in preparing students to participate fully in our digital world: as
designers, users, and changemakers. Together, we can help them
see that while AI may be the headline, human choice and collective
responsibility are the story.

Additional Context for Reviewers

This document represents the third of three major drafts before CSTA
publishes the updated standards in the summer of 2026. Feedback
on this draft will inform how we refine the language and content of
the standards, related clarifying information, and other supports. At
this stage, high level feedback (e.g., related to progressions, structure)
is welcome. However, feedback that critiques the clarity, specificity,
and measurability of individual standards, as well as the utility of the

clarifying information, is most helpful.

The writing team is currently using the following assumptions as
guides throughout the writing process to help determine the quantity,
depth, and breadth of standards:

•	 Students will experience a certain amount of instructional time at
each grade band:

	» Elementary (Grades PK–5): 20 to 40 hours per year (or 30 to
60 minutes per week)

	» Middle school (Grades 6–8): the equivalent of one yearlong
course

	» High school (Grades 9–12): the equivalent of one yearlong
course

•	 Implementation will vary and may include discrete courses and/
or integration in other subject areas.

•	 Students will experience the full vertical progression (i.e.,
students learn the content in the PK–5 standards before entering
middle school and learn the content in the 6–8 standards prior
to entering high school).

While these assumptions may not reflect the current reality of CS
instruction in all schools, they represent an aspirational target. We
ask reviewers to focus on the clarity, specificity, and measurability
of individual standards and their clarifying information. This will help
the writing team to further refine the standards ahead of their official
publication.

CSTA and the standards writing team look forward to reviewing
your valuable insights as we work to define the future of PK–12 CS
education.

Revised PK–12 Computer Science Standards: Draft 3.0	 Introduction

14© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Navigating the Standards

Foundational Standards

The foundational PK–12 Computer Science Standards are structured to
provide coherent learning progressions across the PK–12 continuum. These
standards begin with a PK and Kindergarten (PK/K) band followed by discrete
grade-level expectations for students in grades one through five. The middle
school standards are grouped into a single grade band, which then leads into
a final grade band that covers foundational high school standards.

We organized the foundational standards for pre-kindergarten through high
school around three primary components: concepts, pillars, and dispositions.
Concepts serve to organize standards by content. The five concepts are:
(1) Algorithms & Design, (2) Programming, (3) Data & Analysis, (4) Systems &
Security, and (5) Computing & Society. We recognized artificial intelligence
(AI) as a priority during the standards revision process. AI-related content is
distributed across the five concepts instead of being a discrete concept.

Pillars consist of Practices that cut across all concepts. The four pillars are:
(1) Ethics & Social Responsibility, (2) Inclusive Collaboration, (3) Computational
Thinking, and (4) Human-Centered Design.

Dispositions are habits of mind fostered within CS classrooms and developed
through instruction that includes the concepts and pillars. The highest-
priority dispositions within the CS context are: creativity, sense of belonging in
CS, critical thinking, persistence, reflectiveness, resourcefulness, and curiosity.

The draft PK–12 standards within this organizational structure are foundational for all students. We adapted this structure from the Reimagining CS
Pathways: High School and Beyond project, which aimed to create a community definition of what a foundational CS learning experience for all
high school students includes and possible CS learning opportunities beyond that foundation. The graphic above provides a visual representation
of the relationship between concepts, pillars, and dispositions.

Once students establish a strong foundation in computer science, they can pursue specialized learning. In support of this, sets of Specialty
Standards have been developed to articulate learning objectives for high school students who have completed foundational computer
science education and elect to pursue deeper study in specific computing domains. These standards are designed to support a transition from
foundational CS for all students to specialized postsecondary readiness, leading to enrollment, employment, or enlistment.

https://reimaginingcs.org/
https://reimaginingcs.org/

Revised PK–12 Computer Science Standards: Draft 3.0	 Introduction

15© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Specialty Standards

Specialty Standards define advanced, domain-specific learning
beyond foundational PK–12 CS content. The Standards are organized
into two tiers (Specialty I and Specialty II) across six high school
specialty areas identified through the Reimagining CS Pathways
project:

• Software Development

• Cybersecurity

• Data Science

• Physical Computing

• Artificial Intelligence (AI)

• Game Development

Specialty I standards cover the introductory knowledge and skills
essential to a chosen specialty area, serving as the first dedicated
learning experience in that domain. Specialty II standards describe
advanced study within the specialty area, designed to prepare
students for college-level coursework or industry-level certifications.

Additionally, one level of X + CS Standards has been developed to
guide the integration of foundational high school CS content into
other subject areas, like Journalism or Biology.

Throughout the standards, students attend to the societal and
environmental impacts of computing. We use the term societal to
encompass social, governmental, political, cultural, and economic
factors.

Every student
prepared for a
world powered
by computing.

https://reimaginingcs.org/

Revised PK–12 Computer Science Standards: Draft 3.0	 Introduction

16© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Components of a Standard

* Components that are viewable in full in this document.

In addition to the standards and their associated identifiers, clarifying information accompanies each standard to provide additional guidance on
what is included and how a standard might be implemented. Brief descriptions of clarifying components are found in the table below. A subset
of these components will be available in the final print version of standards. The remaining components will be accessible through the interactive
web interface.

Component Description

Boundary

Statement(s)*

Boundary statements are elaborations on the standard language including important nuances and clarifications that are critical
for understanding the full intent of the standard, including what is and is not expected. Boundary statements ensure that those
interpreting the standards can understand what the standard means within the context of the particular grade level/band, including
what is explicitly considered out of scope. Boundary statements ensure that content remains grade level/band appropriate and that
the focus of instruction is placed as intended.

Pillar and Practice

Alignment*
Each standard is tagged with one or two computer science practices and their associated pillars. This information provides framing
and guidance that informs instructional design decisions and highlights how students should engage with CS content.

Disposition

Alignment*
Each standard is tagged with one to three dispositions. This information signals the attitudes and habits of mind that are developed
through thoughtfully designed instructional experiences.

Progressions Progressions contextualize the standard among adjacent grade levels/bands and help to clarify what students will have ideally learned
prior to the given grade level/band and what the current standard is building toward in future years. Progression views are available in
the interactive web display, as well as via a separate downloadable document.

Implementation

Example(s)

One or more implementation examples for each standard include high-level descriptions of activities that can be implemented with
students to address the standard. Where possible, multiple examples with differing approaches (e.g., unplugged and computer-based)
are included.

Interdisciplinary

Connections

Interdisciplinary connections provide examples of implementation strategies within the context of a non-CS or CS-related discipline.
The identification of strong connections with the Next Generation Science Standards, Common Core State Standards for Mathematics,
and Common Core State Standards for English Language Arts were prioritized. Additional connections with other sets of disciplinary
standards such as social studies, the arts, and cybersecurity are also available.

Resources This component includes vetted instructional resources that can be tailored and used to teach or assess the standard.

Academic

Vocabulary

Academic vocabulary are terms that are explicitly referenced in the standard itself and are critical to the development of knowledge
within the given concept. These terms are defined as part of the accompanying glossary and are integrated into the interactive web
view of the standards.

Revised PK–12 Computer Science Standards: Draft 3.0	 Introduction

17© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Example of All Components for a Security Standard

While draft boundary statements and pillar, practice, and disposition alignment are available for all standards in this document, the following is an
example of most of the clarifying components that will be available at standards publication (aside from progressions and resources).

Standard:

MS-SAS-32: Explain the effects of failing to use the CIA
(Confidentiality, Integrity, Access) Triad.

Boundary Statement(s):

Students should recognize and explain what happens when each
element of the CIA Triad is not maintained. When confidentiality
is compromised, sensitive data is exposed (e.g., leaked passwords,
shared personal information). When integrity is compromised, data
becomes corrupted or altered (e.g., incorrect grades in a school
database). When availability is compromised, systems become
inaccessible (e.g., a denial-of-service attack blocking a website).
Students should apply the CIA Triad to age-appropriate, relatable
contexts (e.g., school accounts, social media, or online gaming,
demonstrating understanding of how failures connect to real-
world impacts).

Students are not expected to conduct professional-level security
audits or design encryption protocols. Students do not need to
develop deep cryptography knowledge.

Pillar(s) and Practice(s):

•	 Inclusive Collaboration: 3. Communicate effectively about
computing.

•	 Inclusive Collaboration: 5. Act Responsibly in computing
collaborations.

Disposition(s):

Critical Thinking, Reflectiveness

Progressions:

Grade 5 Middle School High School

E5-SAS-13: Describe
the concepts of the
CIA (Confidentiality,
Integrity, Access)
Triad and how each
part is important
in protecting
information.

MS-SAS-32: Explain
the effects of failing
to use the CIA
(Confidentiality,
Integrity, Access)
Triad.

MS-SAS-33: Evaluate
common types
of cyber attacks,
including social
engineering and
malware, and
preventions.

HS-SAS-32: Identify
different types of
cybersecurity and
physical security
measures and the
trade-offs for users,
data, and devices.

HS-SAS-33: Classify
the causes and
impacts of security
breaches and social
engineering attacks
for individuals,
industries,
communities, and
governments.

HS-SAS-34:
Formulate a solution
to a security flaw in a
given system.

(example continued on next page)

Revised PK–12 Computer Science Standards: Draft 3.0	 Introduction

18© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Implementation Examples

Students could explore failures of the CIA Triad in unplugged and/
or computer-based activities.

Unplugged — CIA Failure Case Studies: In small groups students
receive scenario cards (e.g., password leaks, altered grades, denial-
of-service) and identify which CIA element failed, describe the
consequences for users and systems, and propose age-appropriate
prevention strategies. Groups present findings and compare cases
across contexts such as school accounts, social media, and online
gaming. Teacher prompts: “Which CIA element failed? What were
the consequences? How could this be prevented?”

Computer-based — Simulated CIA Breakdowns: Teacher-run
simulations intentionally demonstrate failures (e.g., overly broad
sharing settings to show confidentiality loss; silent modification of
a document to show integrity loss; temporary account lockouts
to show availability loss). Students work individually or in pairs to
identify the specific failure, explain its effect on tasks/users, and
recommend safeguards. Wrap-up discussion asks students how
those safeguards would change behavior or system settings.

Interdisciplinary Connections

CCSS.MATH.CONTENT.6.RP.A.3: Use ratio and
proportional reasoning to solve problems.

Students calculate the percentage of students in class
who reuse passwords across accounts and analyze risks.

CCSS.ELA-LITERACY.W.8.1: Write arguments to support
claims with evidence.

Students write a persuasive essay arguing which element
of the CIA Triad is most critical to protect in schools.

National Core Arts Standards – Visual Creating
VA:Cr1.1.6a: Combine concepts collaboratively to
generate innovative ideas for creating art.

Students collaboratively design posters or infographics that
illustrate the consequences of neglecting confidentiality,
integrity, or availability in real-world scenarios.

MS-ETS1-2: Evaluate competing design solutions using a
systematic process to determine how well they meet the
criteria and constraints of the problem.

Students evaluate different school-level security measures
(two-factor authentication, password resets, backups) to
determine which best prevents CIA failures.

C3 Framework – D4.8.6-8: Draw on multiple disciplinary
lenses to analyze how a specific problem can manifest
itself at local, regional, and global levels over time,
identifying its characteristics and causes, and the
challenges and opportunities faced by those trying to
address the problem.

Students debate whether schools should prioritize
confidentiality (protecting student data) over availability
(keeping systems always online).

Academic Vocabulary

CIA Triad: A three-part model designed to guide policies for
information security within an organization. In this context,
confidentiality is a set of rules that limits access to information,
integrity is the assurance that the information is trustworthy and
accurate, and availability is a guarantee of reliable access to the
information by authorized people. (CYBER.org)

Revised PK–12 Computer Science Standards: Draft 3.0	 Concepts

19© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Concepts

 Algorithms & Design

Overview: An algorithm is a sequence of
steps designed to accomplish a specific task.
Algorithms are translated into programs, or
code, to provide instructions for computing
devices. In early grades, students learn about
age-appropriate algorithms from the real world.
As they progress, students learn about the
development, combination, and decomposition
of algorithms; the evaluation of competing
algorithms; and the difference between
traditional algorithms and artificial intelligence/
machine learning (AI/ML) algorithms.

The Algorithms & Design standards and the
Programming standards are complementary
and should be considered in tandem.
Algorithms & Design standards focus more
on program planning and evaluation, while
Programming standards focus more on
program implementation.

Subconcept Overview

Algorithm

Fundamentals

Designing algorithms, or step-by-step solutions to a task, are an essential

component of CS. In early grades, students identify and create algorithms

reflecting tasks in their daily lives. As students progress, they develop more

complex algorithms and create visual representations of their solutions.

Problem

Solving

While there may be many approaches to addressing a task, optimizing an

algorithm can result in more efficient and accurate solutions. As students

progress, they begin to evaluate the efficiency and accuracy of computational

algorithms running under different conditions and use problem-solving skills

to explore algorithms’ underlying opaque systems.

Machine

Learning

Machine learning is a subfield of artificial intelligence in which computers

“learn” from data in order to make decisions without being explicitly

programmed to do so. This subconcept includes content that is key for

understanding foundational components of artificial intelligence. In early

grades, students recognize patterns used by people and machines for

decision-making. As they advance, students explore how AI models evolve

with new training data, train AI models for classification or prediction, and

analyze the relationship between training data properties and AI model

output. By high school, students justify the selection of AI algorithms, evaluate

training data for quality and bias, and develop AI models for specific tasks

using appropriate data and tools.

Impacts of

Algorithms

and Design

Algorithms can have positive and negative effects on people and society. It is

important to evaluate not only how well an algorithm works, but also who it

benefits, who it may unintentionally harm, and why. In early grades, students

begin by exploring how algorithms can lead to different results for themselves

and others. As students progress, they learn to identify possible consequences

of algorithmic decisions and they apply human-centered design principles

to develop and refine computational algorithms. In later grades, students

critically analyze the societal impacts of algorithms, including issues of

fairness, equity, accessibility, and bias, and consider how algorithmic systems

can shape real-world experiences.

Revised PK–12 Computer Science Standards: Draft 3.0	 Concepts

20© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

 Programming

Overview: Programming controls all computing
systems, empowering people to communicate
with the world in new ways and solve compelling
problems. The development process to create
meaningful and efficient programs involves
choosing which information to use and how
to process and store it, breaking apart large
problems into smaller ones, recombining existing
solutions, and analyzing different solutions.

The Algorithms & Design standards and the
Programming standards are complementary
and should be considered in tandem.
Algorithms & Design standards focus more
on program planning and evaluation, while
Programming standards focus more on program
implementation.

Notes:

•	 Many standards in this concept discuss
creating or reviewing “code.” Not all code
is text-based or screen-based. In particular,
students in early grades may interface with
tangible programming systems. Standards
were written considering the programming
tools commonly used at each grade level.

•	 While the other four concepts contain a
subconcept addressing societal and ethical
impacts, the Programming concept weaves
societal and ethical impacts throughout its
five subconcepts.

Subconcept Overview

Programming

Fundamentals

Across grade levels, students focus on reading and interpreting code,

translating algorithms into code, and understanding programming languages’

types, syntax, and semantics. Although programming constructs repeat across

this subconcept, their complexity is expected to increase as students advance

through grade levels.

Program

Development

Programming involves paying attention to the organization and structure

of code. In early grades, students strengthen their understanding of how

to create programs. As students progress, they focus more on building on

existing code, modularizing code, documenting code, and using AI tools to

support their programming.

Reading and

Documenting

Code

In a world where AI assistants can generate code based on a prompt, the

ability to read and interpret code is increasingly important. In early grades,

students describe how code completes tasks including explaining code

functionality, program development steps, and how specific code segments

contribute to a program’s purpose. They also learn to document programs for

clarity and create embedded or external documentation for projects. Later on,

students evaluate AI-generated code for accuracy, reliability, and usability.

Testing and

Refining Code

Ensuring that code works as intended is key to building reliable programs. In

early grades, students focus on identifying and fixing errors in their programs.

As students progress, they focus on more complex troubleshooting strategies,

optimizing their code for efficiency and usability and assessing the accuracy

and bias of AI-generated code.

Data Handling Understanding how programs structure and store data is necessary for

successful programming. In early grades, students focus on identifying

and labeling data in their daily lives and in age-appropriate programming

languages. As students progress, they learn about and manipulate more

complex data types.

Note: This subconcept focuses on data used while programming. The Data &

Analysis concept focuses more on collecting, storing, and analyzing data with

the use of computing.

Revised PK–12 Computer Science Standards: Draft 3.0	 Concepts

21© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

 Data & Analysis

Overview: Computers collect and store data
so it can be analyzed to better understand the
world and make more accurate predictions. The
amount of digital data generated in the world is
rapidly expanding, so the need to process data
effectively is increasingly important.

Subconcept Overview

Data

Fundamentals

Data is generated and collected by people, often using computing

technologies such as sensors and other automated systems. Metadata is

“data about data.” Metadata provides context about data, including its origin,

structure, and purpose. In early grades, students learn about different types of

data and how data is generated, collected, and organized. As they progress,

students gain experience with larger and more varied datasets, learn about

more advanced data types and organization structures, and develop data

documentation.

Data

Processing

Computing devices process data to make it useful for analysis. In earlier

grades, students learn how to use computational tools to manipulate data:

filtering, grouping, summarizing, transforming, and reshaping data. As

students progress, they apply computational methods to: automate data

cleaning, identify and handle errors in data, and prepare data for analysis.

Data

Investigation

Data investigations are a multistep process. When conducting data

investigations, students pose data questions, use computational tools to

collect and analyze data, create data visualizations, generate insights, and

tell the story of their data. In early grades, students focus on asking simple

questions that can be answered with small datasets. As students progress, they

work with larger datasets, asking and answering more sophisticated questions

that consider variability and relationships between multiple variables.

Impacts of

Data Science

Students explore how data influences decision-making and impacts

individuals and communities. Students examine the benefits, risks, and ethical

considerations around data use. In early grades, students discuss how using

data can help them make more informed decisions in their daily lives. As

students progress, they explore issues related to bias in data, data privacy,

artificial intelligence and machine learning, and large-scale societal and

environmental impacts of data science applications.

Revised PK–12 Computer Science Standards: Draft 3.0	 Concepts

22© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

 Systems & Security

Overview: Systems & Security includes the
broad categories of hardware and software,
networks, and cybersecurity. The physical
components (hardware) and instructions
(software) that make up a computing system
communicate and process information in digital
form. Networks connect computing devices
to share information and resources. Greater
connectivity in the computing world has also
led to an increased need for security to protect
the information being transmitted.

Subconcept Overview

Hardware and

Software

Computing systems use hardware and software to communicate and process

information in digital form. In early grades, students learn how systems use

both hardware and software to represent and process information. As they

progress, students gain a deeper understanding of the interactions between

hardware and software at multiple levels within computing systems.

Security Transmitting information securely across networks requires appropriate

protection. In early grades, students learn how to protect their personal

information. As they progress, students learn about information transmission

across devices, network design, and how to protect networks from different

types of threats.

Networks Computing devices communicate with one another across networks to share

information. In early grades, students learn that computers connect them to

other people, places, and things around the world. As they progress, students

gain a deeper understanding of how information is sent and received across

different types of networks.

Impacts of

Computing

Systems

Humans created computing systems to accomplish tasks and solve problems.

While there have been benefits, there have also been harms and the creation

of new problems. In early grades, students examine the impacts of computing

systems on individuals. As they progress, students learn about the impacts of

computing systems on global society.

Revised PK–12 Computer Science Standards: Draft 3.0	 Concepts

23© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

 Computing & Society

Overview: Computing
shapes—and is shaped by—
individuals, communities,
and cultures from around the
world. Computing transforms
daily life, economies,
governments, and global
systems in ways that offer both
great promise and significant
challenges. The impacts of
computing are complex,
encompassing advances
that improve lives alongside
harms that deepen inequities
and raise ethical concerns.
Students learn to critically and
responsibly navigate these
social implications, considering
issues of equity, access,
and accountability, while
also exploring computing’s
potential to promote
social good. By examining
the evolving relationship
among computing, culture,
and society, students are
empowered to contribute
thoughtfully and responsibly to
a digital future.

Subconcept Overview

History of

Computing

The history of computing reflects contributions from many societies and knowledge traditions.
In early grades, students first identify how computing is used in daily life. Then they focus on how
technologies have evolved over time in response to social, scientific, and economic needs. In middle
grades, students evaluate how historical challenges led to computing innovations and compare
the roles played by individuals, communities, organizations, and governments in advancing these
technologies. Students also explore the societal impacts of computing innovations. In later grades,
students delve into the main eras of computing history and understand policy and legislation
related to computing technologies. They also analyze the historic impacts of technologies, giving
consideration to the factors that contributed to disparities across communities.

Emerging

Technologies

Computing is a rapidly developing discipline. While other concepts cover what students should
know about the current field of CS, this subconcept focuses on recently developed technologies
that have the potential to significantly impact society. In early grades, students learn how computing
technology aids their daily life. They evaluate choices and consequences related to emerging
technologies and identify problems that these advances could address. In middle grades, students
evaluate how emerging technologies impact user experiences, while attending to ethical design
principles. They explain how emerging technologies can inspire innovation and help people
accomplish tasks in new ways. In later grades, students understand the core computational principles
behind emerging technologies and compare the ethical considerations of emerging technologies,
using various frameworks.

Humans and

Computing

Humans and computing technologies are intricately connected. Students will learn that people are
the fundamental creators of these technologies and will differentiate between tasks best suited for
humans versus those for computing. They will investigate how humans leverage computing to solve
problems and examine the motivations behind designing and building these systems. A critical focus
is distinguishing between human and computational learning processes, enabling students to decide
when and where computing technologies, including AI, are appropriate and helpful. As they progress,
students will analyze the trade-offs of using AI-powered solutions and evaluate how human choices
in designing, deploying, and regulating AI influence its risks, benefits, and long-term societal impacts.

Career

Exploration

Computing is foundational to nearly every career field. Understanding the role of computing in
the workplace prepares students to make informed choices about their futures. In early grades,
students recognize how digital tools and technologies support everyday work across professions. In
middle grades, students explore how computational thinking drives innovation across industries and
examine the ethical challenges that professionals may encounter. In later grades, students connect
computing to their personal interests and career goals, investigate computing-related pathways, and
analyze how advancements in technology foster new opportunities for growth across diverse fields.

Revised PK–12 Computer Science Standards: Draft 3.0	 Pillars & Practices

24© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Pillars & Practices

Pillars differ from concepts and are collections of practices that are integral to each concept. Practices describe the behaviors and ways of thinking
that students with a strong foundation in computer science use to fully engage in a world powered by computing. Each standard is intended to
reflect both content and one or more practices.

Ethics & Social Responsibility

The goal of the Ethics & Social Responsibility pillar is for students
to develop habits that help them become responsible creators of
technology. The practices for Ethics & Social Responsibility are
based on the Association for Computing Machinery’s list of general
ethical principles (ACM, 2018).

Practices

1.	 Use computing for positive social impact.

a.	 Imagine and create computing technologies that solve problems,

strengthen communities, and improve quality of life.

b.	 Evaluate whether potential benefits of computing solutions

outweigh possible harms. Ensure that harms are not concentrated

on specific groups and avoid serious environmental harm

c.	 Explain design trade-offs in computing projects, including

what values these decisions reflect and what was prioritized or

sacrificed.

2.	 Respect others’ rights when creating computational technologies.

a.	 Respect other creators of computational technologies. Only use

others’ work with permission and give appropriate attribution.

b.	 Respect users’ privacy and protect their data. Give users choices

about how their information is collected and used. Only collect

the minimum amount of information necessary.

Revised PK–12 Computer Science Standards: Draft 3.0	 Pillars & Practices

25© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Inclusive Collaboration

The core of the Inclusive Collaboration pillar is to help students
develop productive collaborations with diverse groups of people.
The practices in this pillar, which were synthesized from the STEL
(ITEEA, 2020), the Social Justice Standards (Learning for Justice,
n.d.), the Framework for 21st Century Learning (Partnership for 21st
Century Skills, 2009), and the K–12 CS Framework (2016), address
communication skills, project management skills, and personal
conduct when working with others.

Practices

3.	 Communicate effectively about computing.

a.	 Share technical ideas and explain computing concepts clearly to

different audiences.

b.	 Give and actively listen to others’ input and constructive

feedback. Consider diverse perspectives and multiple solutions

to technical challenges.

4.	 Manage computing projects.

a.	 Establish shared goals, break the work into discrete tasks, and

set development milestones.

b.	 Document code and development processes.

5.	 Act responsibly in computing collaborations.

a.	 Cultivate working relationships with individuals possessing

diverse perspectives, skills, and personalities.

b.	 Participate reliably in computing teamwork, share responsibility

for project outcomes, and meet development deadlines.

c.	 Reflect on contributions to computing projects, including

technical decisions and team interactions, to improve technical

and collaboration skills.

Revised PK–12 Computer Science Standards: Draft 3.0	 Pillars & Practices

26© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computational Thinking

Computational thinking is a way of thinking about problems
and formulating problems and solutions so that an information-
processing agent (e.g., a computer) can help to solve them.
Computational thinking practices should underpin instruction in
each concept and connect students’ CS learning experiences.
Embedded within this pillar is the engineering design process,
in which students identify and define computational problems,
develop computational solutions, and iteratively test, refine, and
optimize those solutions. These practices are largely based on
the original Computational Thinking practices from the K–12
CS Framework (2016), but also incorporate ideas from the Next
Generation Science Standards (NGSS Lead States, 2013) and
Computational Thinking 2.0 (Tedre et al., 2021).

Practices

6.	 Define computational problems.

a.	 Identify real-world problems that can be solved computationally

using rule-based approaches, data-driven approaches (e.g.,

machine learning), or hybrid methods.

b.	 Clearly state criteria for success and identify constraints.

c.	 Decompose complex problems into manageable subproblems.

7.	 Develop and use abstractions.

a.	 Extract common features and patterns from data, processes, or

phenomena to create general methods and algorithms.

b.	 Create reusable modules and procedures that can apply to

multiple situations to reduce complexity.

c.	 Model phenomena and develop simulations, using rule-based

and data-driven approaches, to understand and evaluate

potential outcomes.

8.	 Create computational artifacts.

a.	 Generate and evaluate multiple solution approaches to determine

which best meet the defined criteria given the constraints.

b.	 Plan the development of computational solutions.

c.	 Implement solutions by developing or modifying artifacts through

traditional programming, model training, or hybrid methods.

9.	 Test and refine computational artifacts.

a.	 Test, debug, and troubleshoot computational artifacts

systematically using appropriate methods, such as generating

test cases for rule-based programs and accuracy evaluation for

machine learning models.

b.	 Iteratively refine and optimize solutions to meet criteria for

success.

Revised PK–12 Computer Science Standards: Draft 3.0	 Pillars & Practices

27© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Human-Centered Design

Using human-centered design practices is a critical piece of
responsibly creating computational solutions. Human-centered
design includes principles of human-computer interaction. The
following practices are drawn from a variety of well-known
sources on human-centered design, including the National
Institute of Standards and Technology (NIST, 2021), the Interaction
Design Foundation (IDF, n.d.), and the UX Design Institute (Vinney,
2023), as well as the K–12 CS Framework (2016).

Practices

10.	 Understand and involve diverse users in design decisions.

a.	 Learn about different people’s experiences with computing

technologies, including those with different abilities, backgrounds,

and needs.

b.	 Gather input and feedback from diverse users throughout the

design and development process to help create positive user

experiences.

11.	 Use iterative design processes.

a.	 Start with simple prototypes and continuously test and refine

solutions to ensure usability and accessibility.

12.	 Design computational technologies that empower and inform users.

a.	 Respect users’ autonomy. Be transparent about how computational

technologies make decisions that affect users. Give users control

over how they interact with technologies rather than leveraging

human limitations to serve creators’ interests over users’ interests.

b.	 Consider the benefits and harms of human-like behaviors in

computational technologies (e.g., conversational AI) and how they

influence user perceptions and actions.

Revised PK–12 Computer Science Standards: Draft 3.0	 Dispositions

28© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Dispositions

What Are Dispositions?

Dispositions are the habits of mind, attitudes, and approaches that
shape how students engage with learning. They define how students
think, persist, collaborate, and reflect, beyond what they can code
or recall. In computer science, dispositions influence how students
navigate challenges, debug with purpose, and build confidence in
problem-solving. Fostering dispositions ensures students not only
learn to program but also develop as self-directed, motivated, and
resilient learners.

Priorities in CS Education

In Reimagining CS Pathways, the CS education community identified
seven key dispositions essential to equitable and enduring CS
learning:

1.	 Creativity: Generating original, meaningful computing ideas and
projects.

2.	 Sense of Belonging: Feeling included, respected, and recognized
in the CS community.

3.	 Critical Thinking: Using reasoning and evidence to analyze and
refine solutions.

4.	 Persistence: Continuing effort despite frustration or setbacks.

5.	 Reflectiveness: Connecting past experiences to future learning
choices.

6.	 Resourcefulness: Strategically seeking tools, people, and
references to solve problems.

7.	 Curiosity: Asking questions and exploring beyond assigned work.

The majority of these dispositions align with self-regulated learning,
where students plan, monitor, and evaluate their growth as learners
of CS.

Why These Dispositions Matter

Dispositions turn computing from a set of tasks into a process of
growth and identity formation. They:

•	 Advance equity and inclusion – Belonging and creativity help all
students see themselves reflected in computing.

•	 Deepen understanding – Critical thinking and reflection
connect conceptual learning to practice.

•	 Build resilience – Persistence and resourcefulness transform
frustration into problem-solving progress.

•	 Sustain motivation – Curiosity keeps students exploring beyond
the minimum and learning autonomously.

Dispositions are the foundation of lasting CS learning. They connect
technical ability to personal growth, ensuring that every student
can engage meaningfully with computing. Dispositions are fostered
through intentional instructional design decisions and a consistent
instructional approach that encourages their development. When
classrooms intentionally emphasize these core dispositions, students
develop both the confidence and competence to thrive as problem
solvers, innovators, and future leaders in computer science.

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

29© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Foundational Standards for PK–12

Naming Conventions for Foundational Standards

Each of the identifiers for foundational standards follows this naming convention:

Grade band

XX -

Concept

YYY -

Number

##

There are standards for each individual elementary grade. All identifiers for elementary
standards begin with “E,” followed by a letter (K to indicate PK/Kindergarten standards)
or number (1–5) to indicate the grade level. Standards for grades 6–8 are banded
together as middle school standards. Identifiers for middle school standards begin
with “MS.” Standards for grades 9–12 are banded together as high school standards.
Identifiers for high school standards begin with “HS.”

The next set of characters indicate the concept for each standard. The following table
shows the abbreviations for each concept

Abbreviation Concept

ALG Algorithms & Design

PRO Programming

DAA Data & Analysis

SAS Systems & Security

CAS Computing & Society

The last two digits of each standard reflect the standard number. The foundational
standards begin with 01 for each concept in each grade or grade band. The standards
are numbered continuously across all concepts within each grade or grade band.

To access a progression

view of the foundational

standards, see:

https://csteachers.org/

PK-12-Foundational-

Standards-Draft-3.0-

Progression-Chart

https://csteachers.org/PK-12-Foundational-Standards-Draft-3.0-Progression-Chart
https://csteachers.org/PK-12-Foundational-Standards-Draft-3.0-Progression-Chart
https://csteachers.org/PK-12-Foundational-Standards-Draft-3.0-Progression-Chart
https://csteachers.org/PK-12-Foundational-Standards-Draft-3.0-Progression-Chart

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

30© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Algorithms & Design

Algorithm Fundamentals

Problem Solving

Machine Learning

Impacts of Algorithms and

Design

Algorithms & Design

Algorithm Fundamentals

EK-ALG-01: Carry out algorithms in daily activities.

Boundary
Statement(s)

Students should enact simple, step-by-step activities in the correct sequence for familiar

classroom or home tasks. Following classroom routines (e.g., cleaning up or lining up) or

completing personal tasks (e.g., tying shoes or washing hands) are appropriate.

Students are not expected to carry out algorithms that include conditionals or iteration.

Students are not required to write algorithms or use a programming language.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking

E1-ALG-01: Decompose a problem or task into individual parts to develop an algorithm.

Boundary
Statement(s)

Students should be able to break down familiar, multistep tasks into smaller, ordered steps,

focusing on sequencing and logical thinking. For example, when preparing to walk in the

hallway, students could identify the steps as: (1) quietly stand up and push in your chair, (2) walk

to your spot in line, and (3) face forward with hands to yourself.

Students are not expected to work with abstract problems or create algorithms involving

conditional logic (if/then). Students are not required to use a programming language.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

31© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Algorithms & Design

Algorithm Fundamentals

Problem Solving

Machine Learning

Impacts of Algorithms and

Design

E2-ALG-01: Create an algorithm that includes sequence, events, and iteration to solve a problem or
express ideas.

Boundary
Statement(s)

Students should create simple algorithms using a sequence of steps that respond to events

(e.g., “Ready, set, go!” or tapping on a character) and include loops to accomplish a task or

express an idea. Appropriate activities include creating a storyboard for a story to be coded later,

developing an algorithm to solve a math story problem, or designing an algorithm to conduct a

science experiment. Students may complete this work individually or with peers.

Students are not expected to use complex or nested loops. Students are not required to create

algorithms with conditional branches or variables.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Creativity, Critical Thinking

E3-ALG-01: Create an algorithm that includes sequence, events, iteration, and selection to solve a
problem or express ideas.

Boundary
Statement(s)

Students should focus on solving problems or expressing ideas that include sequences,

responses to events, iteration (e.g., loops), or selection (e.g., if/then). Appropriate activities

include writing instructions for a game character to move forward, jumping over obstacles

repeatedly, and choosing a different path when encountering a fork in the road. Students may

complete this work individually or with peers.

Students are not expected to write advanced code or use text-based programming languages.

Students are not required to understand complex data structures, optimization, or formal syntax.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

32© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Algorithms & Design

Algorithm Fundamentals

Problem Solving

Machine Learning

Impacts of Algorithms and

Design

E4-ALG-01: Write a description of an algorithm using everyday language that incorporates a
combination of sequence, events, iteration, and selection to solve a problem or express ideas.

Boundary
Statement(s)

Students should write step-by-step representations of an algorithm using grade-appropriate,

everyday language that includes sequences, responses to events, iteration (e.g., loops), or

selection (e.g., if/then). Outlining a “choose your own adventure” story where readers make

decisions that alter the path is appropriate. Students may complete this work individually or with

peers.

Students are not expected to create visual representations, flowcharts, or formal pseudocode.

Students are not required to create a single plan that includes every program control structure.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Creativity, Critical Thinking

E5-ALG-01: Construct a visual representation of an algorithm that incorporates a combination of
sequence, events, iteration, selection, and variables to solve a problem or express ideas.

Boundary
Statement(s)

Students should create visual representations (e.g., storyboards, physical coding blocks, mind

maps, or annotated diagrams) showing algorithms that use combinations of the following

control structures: sequence, events, iteration, selection, and variables. Illustrating an algorithm

as a drawing on index cards showing the sequence of events from start to finish on a horizontal

line with branches for selection is appropriate. Students may complete this work individually or

with peers.

Students are not expected to include complex data structures (e.g., arrays or lists), functions,

or more than one level of nested iteration or selection. Students are not required to use formal

flowchart notation or a single comprehensive diagram showing all control structures.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Creativity, Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

33© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Algorithms & Design

Algorithm Fundamentals

Problem Solving

Machine Learning

Impacts of Algorithms and

Design

MS-ALG-01: Develop an algorithm that includes variables, data, and storage.

Boundary
Statement(s)

Students should design and explain algorithms that use or update information (e.g., keeping

score, tracking inventory, or responding to user inputs). Representations may be verbal, visual,

physical, or block-based to illustrate logic rather than executable code. Students may complete

this work individually or with peers.

Students are not expected to write executable programs, manage memory, or use complex data

types.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Persistence, Critical Thinking, Creativity, Resourcefulness

MS-ALG-02: Create a flowchart or pseudocode that includes a combination of sequence, events,
iteration, selection, and variables to model an algorithm.

Boundary
Statement(s)

Students should represent algorithms using flowcharts or clearly structured pseudocode that

captures core programming concepts. Teacher-provided templates or agreed-upon formats are

appropriate.

Students are not expected to use professional programming syntax or convert pseudocode

directly into executable code.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Reflectiveness, Curiosity, Sense of Belonging in CS, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

34© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Algorithms & Design

Algorithm Fundamentals

Problem Solving

Machine Learning

Impacts of Algorithms and

Design

HS-ALG-01: Develop an algorithm that includes at least one procedure that has sequence, iteration,
and selection.

Boundary
Statement(s)

Students should design algorithms that use named, reusable procedures incorporating

sequence, selection, and iteration. For example, a student could create a procedure to calculate

a student’s final grade by iterating through a list of scores and applying a rule to drop the lowest

grade. Students may complete this work individually or with peers. Students may use real-world

data but it is not required.

Students are not expected to develop algorithms for complex systems or use advanced data

structures such as heaps or trees.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Resourcefulness, Creativity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

35© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Algorithms & Design

Algorithm Fundamentals

Problem Solving

Machine Learning

Impacts of Algorithms and

Design

Problem Solving

Standards do not begin until middle school.

MS-ALG-03: Verify the correctness of an algorithm for given inputs.

Boundary
Statement(s)

Students should test whether a given algorithm produces expected outputs for specific inputs

by tracing steps or running the algorithm. For example, students could check whether a sorting

algorithm correctly orders numbers or whether a set of instructions builds a shape as intended.

Students are not expected to perform formal proofs of correctness, analyze efficiency, or

optimize algorithms. Students are not required to use mathematical notation or comparison of

multiple algorithms for performance.

Pillar(s) and
Practice(s)

Computational Thinking: 9. Test and refine computational artifacts.

Human-Centered Design: 11. Use iterative design processes.

Disposition(s) Critical Thinking, Persistence

MS-ALG-04: Decide whether to use rule-based, data-driven, or hybrid approaches when solving problems.

Boundary
Statement(s)

Students should distinguish among rule-based (explicit steps), data-driven (patterns learned

from data), and hybrid (combined) approaches, and reason about which method would be

most appropriate for different kinds of problems. For example, students might discuss why a

rule-based approach fits a simple game like tic-tac-toe, why data-driven methods are better for

weather prediction, or why a hybrid approach could work for personalized recommendations.

Students should focus on evaluating and justifying choices, not on building or implementing the

systems themselves.

Students are not expected to design or implement AI/machine learning models or explain their

underlying statistical or computational mechanisms.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

36© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Algorithms & Design

Algorithm Fundamentals

Problem Solving

Machine Learning

Impacts of Algorithms and

Design

MS-ALG-05: Generate outputs from AI models to assist in solving a computational problem.

Boundary
Statement(s)

Students should use age-appropriate AI tools or prebuilt models to generate outputs that

support solving a computational problem. Examples include generating text to brainstorm

ideas, using image recognition to classify objects, or asking a chatbot for troubleshooting help.

Students should focus on interpreting and assessing AI outputs, not building or programming AI

systems.

Students are not expected to train AI models or explain underlying algorithms.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Human-Centered Design: 11. Use iterative design processes.

Disposition(s) Reflectiveness, Curiosity

HS-ALG-02: Evaluate algorithms for efficiency, correctness, and clarity, using metrics or test cases.

Boundary
Statement(s)

Students should analyze algorithms for efficiency (time or memory use), correctness (accuracy

of outputs), and clarity (human readability), using simple metrics or test cases. For example, they

could compare two algorithms for finding the largest number in a list by testing runtime when

using different sized lists.

Students are not expected to apply formal mathematical proofs or Big O notation. Students are

not required to analyze all possible inputs.

Pillar(s) and
Practice(s)

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

37© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Algorithms & Design

Algorithm Fundamentals

Problem Solving

Machine Learning

Impacts of Algorithms and

Design

HS-ALG-03: Optimize the design of an algorithmic solution using abstractions such as procedures,
modules, lists, and/or objects.

Boundary
Statement(s)

Students should improve algorithmic designs by identifying repetitive patterns or complex logic

and restructuring using abstractions for clarity and efficiency. For example, they might refactor

repeated code to calculate the area of a rectangle into a reusable procedure that performs the

calculation. Students should focus on incremental improvement of existing designs.

Students are not expected to identify the single “best” solution to a problem.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Reflectiveness, Critical Thinking, Resourcefulness

HS-ALG-04: Evaluate AI-generated output to assess bias, accuracy, and potential harms.

Boundary
Statement(s)

Students should analyze and critique AI-generated content (e.g., text, images, or code) for

accuracy, bias, and potential harms. For example, they might examine how an image-generation

tool underrepresents certain groups or produces inaccurate results due to biased training data.

Students should focus on critical evaluation of outputs rather than technical implementation.

Students are not expected to build or debug AI models or understand their internal

mathematical algorithms.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Disposition(s) Critical Thinking, Reflectiveness, Sense of Belonging in CS

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

38© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Algorithms & Design

Algorithm Fundamentals

Problem Solving

Machine Learning

Impacts of Algorithms and

Design

Machine Learning

EK-ALG-02: Recognize patterns that people and machines can use to make decisions.

Boundary
Statement(s)

Students should notice and identify simple, repeating patterns in objects, sounds, movements,

or pictures, and recognize that these patterns can be used by people and machines to sort,

predict, or classify. For example, students might identify a sequence of colored blocks (red, blue,

red, blue) and reason that a “smart” toy could use this pattern to guess the next color.

Students are not expected to define machine learning or distinguish among types of pattern

recognition. Students are not required to generate complex or abstract patterns beyond familiar,

observable examples.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Disposition(s) Sense of Belonging in CS, Critical Thinking

E1-ALG-02: Investigate how patterns can be used by people and machines to make predictions and
classify objects into categories.

Boundary
Statement(s)

Students should investigate patterns in familiar objects or pictures and use those patterns to

make simple predictions and to classify items into clear, teacher- or student-defined categories

(e.g., color, shape, size, or use). For example, students might recognize several rules that

function to classify the majority of items. When classifying, students should ask “Who or what

doesn’t fit our rule?” and notice when a rule mistakenly excludes or mislabels items.

Students are not expected to use the term bias or to use probability or statistics beyond

counting and comparing. Students are not required to build decision trees.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

39© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Algorithms & Design

Algorithm Fundamentals

Problem Solving

Machine Learning

Impacts of Algorithms and

Design

E2-ALG-02: Examine how computing technologies can learn from patterns in data.

Boundary
Statement(s)

Students should explore simple examples of how a trained machine learning model identifies
patterns in data and makes predictions or recommendations based on those patterns. Students
should notice that models can make more mistakes for some kinds of examples than others,
especially when the training examples were mostly of one kind. Students should focus on
observing that AI systems use patterns in data to make predictions or choices and that limited or
one-sided examples can lead to unfair or uneven results. For example, they might label images for
a teacher-trained model and observe how well it classifies new pictures, or use a drawing app that
predicts what object they are sketching before they finish.

Students are not expected to independently train AI or machine learning models.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Human-Centered Design: 12. Design computational technologies that empower and inform

users.

Disposition(s) Reflectiveness, Curiosity

E3-ALG-02: Investigate how AI models can evolve when new data is added to a training set.

Boundary
Statement(s)

Students should observe and describe what happens when a trained AI or machine learning model
receives additional training data. They should notice when adding missing or underrepresented
examples helps the model make more accurate predictions. For example, students could use
an image-recognition tool to identify animals, then add more pictures to see how the model’s
predictions change or improve. Students should focus on observing how new data affects
outcomes.

Students are not expected to train their own AI models or understand the technical or mathematical
processes behind them. The term bias may be introduced informally, but students are not required
to use it. Students are not required to analyze complex datasets or create models from scratch.

Pillar(s) and
Practice(s)

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

40© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Algorithms & Design

Algorithm Fundamentals

Problem Solving

Machine Learning

Impacts of Algorithms and

Design

E4-ALG-02: Train an AI model to make a classification or prediction.

Boundary
Statement(s)

Students should upload a labeled dataset (e.g., text, numbers, images, sounds, or poses) to train

an AI model that classifies, predicts, or recommends. Students should reflect on results that do

not match expectations (e.g., who is missing from the training data, how adding more diverse

examples might make results more accurate). Students should focus on recognizing that training

data influences model accuracy. For example, students might create a labeled dataset of animal

sounds to train an AI tool, test its accuracy on new examples, and reflect on outputs that differ

from their expectations.

Students are not expected to understand the mathematical processes that enable an AI model to

make predictions. Students are not required to use specific AI tools or specialized hardware.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Reflectiveness

E5-ALG-02: Analyze relationships between the properties of training data and an AI model’s output.

Boundary
Statement(s)

Students should examine how characteristics of training data (e.g., amount, accuracy, labeling

quality, and representativeness) affect an AI model’s performance. Students should connect

unbalanced or poorly labeled data to inaccurate outputs and may learn the term bias to

describe this pattern. Students should focus on making qualitative observations (e.g., “more data

improves accuracy” or “labeling mistakes lead to incorrect predictions”). For example, students

might observe that when too few images are used to train a classifier, the model often mislabels

new images, leading them to conclude that data quantity and quality influence accuracy.

Students are not expected to use statistical formulas, understand how AI decision-making works

mathematically, or define or correct specific bias types.

Pillar(s) and
Practice(s)

Computational Thinking: 9. Test and refine computational artifacts.

Human-Centered Design: 11. Use iterative design processes.

Disposition(s) Reflectiveness, Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

41© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Algorithms & Design

Algorithm Fundamentals

Problem Solving

Machine Learning

Impacts of Algorithms and

Design

MS-ALG-06: Make informed predictions about the hidden processes and functions of AI and other
complex systems.

Boundary
Statement(s)

Students should make reasoned predictions about how an AI system or other complex

technology might be processing information based on observed inputs and outputs. Students

should focus on forming credible, evidence-based inferences from experimentation and

observation. For example, they could compare results from multiple prompts and describe what

the AI seems to prioritize or omit.

Students are not expected to explain exactly how AI systems work internally.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Persistence, Reflectiveness

MS-ALG-07: Investigate ways to improve the accuracy of an AI model and reduce bias by refining the
quality of examples and non-examples in its training data.

Boundary
Statement(s)

Students should test an AI model to evaluate its outputs, identify overrepresented or missing

examples in its training data, and suggest improvements to increase accuracy or reduce bias.

Students should focus on testing, interpreting results, and suggesting refinements based on

evidence. For example, students might notice that a model misidentifies certain objects and

propose adding more diverse examples, then retest to see if performance improves.

Students are not expected to create AI models or understand the technical mechanics of

training.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Reflectiveness, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

42© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Algorithms & Design

Algorithm Fundamentals

Problem Solving

Machine Learning

Impacts of Algorithms and

Design

MS-ALG-08: Create a model card to describe the features and limitations of an AI model.

Boundary
Statement(s)

Students should create a concise model card that documents an AI model’s inputs, outputs, and

limitations. The model card should include: (a) a description of the datasets used for training,

including potential sources of bias; (b) the contexts or scenarios in which the model should or

should not be used; (c) the computing power or time required for operation; and (d) potential

risks, ethical concerns, privacy considerations, and recommendations for fair and responsible

use. Students should focus on documentation and analysis, not implementation or debugging.

Students are not expected to build an AI model or access proprietary training data.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Critical Thinking, Reflectiveness

HS-ALG-05: Justify the selection of an AI algorithm to accomplish a task.

Boundary
Statement(s)

Students should justify the selection of an AI algorithm for a specific task by evaluating its

strengths and limitations relative to the problem requirements. This justification may consider

data size and type, human interpretability, and desired outcomes. Students should focus on

evaluating appropriateness, not technical construction. For example, students might explain that

a decision tree is suitable for classifying spam emails because its logic is transparent and easy to

explain, even if less accurate than other models.

Students are not expected to understand or implement the underlying mathematics or statistics

of these algorithms.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

43© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Algorithms & Design

Algorithm Fundamentals

Problem Solving

Machine Learning

Impacts of Algorithms and

Design

HS-ALG-06: Evaluate training data by examining its source, quality, representativeness, potential
biases, and privacy implications before using it to solve a problem.

Boundary
Statement(s)

Students should critically evaluate datasets before use by examining their origin, purpose,

accuracy, completeness, representativeness, and privacy implications. For example, when using

crime statistics, students might check where the data originated (e.g., police reports, surveys),

assess its quality, ensure all communities are represented, and identify potential biases or

privacy concerns.

Students are not expected to conduct advanced statistical analyses to prove representativeness

or to apply formal bias correction techniques.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Disposition(s) Reflectiveness, Critical Thinking

HS-ALG-07: Develop an AI model for a chosen task using appropriate data and tools.

Boundary
Statement(s)

Students should develop an AI model for a defined task by selecting suitable tools and data,

training the model, and testing its performance against task requirements. Students should

focus on applying accessible AI tools to create and evaluate functional models, not on mastering

the mathematics that underlie them. For example, a student could use a block-based AI platform

or a simple Python library to create a model that recognizes handwritten digits or classifies

objects.

Students are not expected to write algorithms from scratch or use advanced programming

languages.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Creativity, Critical Thinking, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

44© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Algorithms & Design

Algorithm Fundamentals

Problem Solving

Machine Learning

Impacts of Algorithms and
Design

Impacts of Algorithms and Design

EK-ALG-03: Describe how people make algorithms.

Boundary
Statement(s)

Students should recognize that computers function according to algorithms created by people.

They should describe, in simple terms, the human process of creating an algorithm (i.e.,

identifying a task, breaking it into smaller parts, and ordering steps to reach a goal). For example,

students might describe how people design instructions for making a sandwich or sorting

classroom supplies.

Students are not expected to describe all aspects of computational thinking. Students are not

required to understand how algorithms are translated into computer code.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness

E1-ALG-03: Illustrate how changes to algorithms lead to different outcomes for people.

Boundary
Statement(s)

Students should illustrate, through everyday activities or drawings, that changing the order of

steps can produce different results. For example, when following two sets of instructions to

build a block tower, one set might create a tall, stable tower while another creates a shorter or

weaker one.

Students are not expected to write or modify computer code. Students are not required to

understand complex algorithms used in digital tools.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Reflectiveness, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

45© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Algorithms & Design

Algorithm Fundamentals

Problem Solving

Machine Learning

Impacts of Algorithms and
Design

E2-ALG-03: Describe how algorithms might impact peers in varied situations.

Boundary
Statement(s)

Students should describe how algorithms can affect people in fair or unfair ways. The goal is to

describe how an existing algorithm might affect others. For instance, lining up alphabetically

may always place the same student last, influencing how that student feels.

Students are not expected to analyze technical details of algorithms or understand bias.

Students are not required to change or fix algorithms.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Reflectiveness

E3-ALG-03: Compare how different algorithms for solving the same problem produce outcomes that
may benefit or disadvantage different groups of people.

Boundary
Statement(s)

Students should compare two or more algorithms that solve the same problem and explain how

each affects people differently. Examples include different ways to sort items, plan routes, or

schedule activities, noting who benefits or is inconvenienced.

Students are not expected to design new algorithms or evaluate effectiveness. Students are not

required to analyze algorithmic bias.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 12. Design computational technologies that empower and inform

users.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

46© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Algorithms & Design

Algorithm Fundamentals

Problem Solving

Machine Learning

Impacts of Algorithms and
Design

E4-ALG-03: Evaluate how different algorithms may affect outcomes, situations, and people with a
wide range of needs.

Boundary
Statement(s)

Students should evaluate examples where algorithms produce different outcomes and discuss

how those differences may help or harm people with diverse needs or perspectives. Students

should focus on comparing impacts, not on programming or implementation. For example,

students might consider how a navigation app choosing the “fastest” route differs from one

choosing the “safest” route.

Students are not expected to analyze algorithms at a technical level or evaluate efficiency or

performance trade-offs.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Reflectiveness

E5-ALG-03: Articulate how human-centered design principles can be incorporated into the
development of computational solutions, including AI and other emerging technologies.

Boundary
Statement(s)

Students should identify familiar examples of computing solutions (e.g., websites, voice

assistants, video games, recommendation systems) and explain how human-centered design

considerations (e.g., empathy, user needs, requirements, accessibility, fairness, sustainability,

accountability) can be incorporated into their development. Students should consider the

impact of their values (e.g., personal, community, and larger values) on the design. They should

also recognize that AI and other computing technologies are created by people, which may

sometimes lead to unfair or inaccurate outcomes.

Students are not expected to understand the technical details of AI or other computing

technologies.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

47© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Algorithms & Design

Algorithm Fundamentals

Problem Solving

Machine Learning

Impacts of Algorithms and
Design

MS-ALG-09: Plan the design of a computational solution, considering human-centered design principles.

Boundary
Statement(s)

Students should apply principles of empathy, accessibility, and user needs when planning

computational solutions. They should identify the needs of diverse users (e.g., people with

disabilities, multilingual users, those with limited internet access), propose design strategies to

address them (e.g., larger buttons, alt-text for images, alternative color schemes), and discuss

trade-offs between different design choices and their repercussions (e.g., fairness in automated

decision-making algorithms). Students should also identify laws that set requirements for

accessibility (e.g., ADA, IDEA, Section 508).

Students are not expected to produce fully functional solutions or address every identified need.

Students are not required to develop an in-depth understanding of accessibility laws or complex

user-testing processes.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Creativity, Sense of Belonging in CS, Critical Thinking, Curiosity

MS-ALG-10: Describe evidence of beneficial and harmful impacts, ethical issues, and biases of
algorithms encountered in daily life.

Boundary
Statement(s)

Students should identify and describe common ethical issues and biases in AI systems using

familiar examples (e.g., photo apps misidentifying people, voice assistants misunderstanding

accents, or recommendation systems reinforcing prior interests). They should evaluate whether

the outcomes of these systems seem fair and inclusive and explain why biases may occur in

simple, concrete terms.

Students are not expected to program or modify AI tools, understand neural networks, or study

global AI policy.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Creativity, Sense of Belonging in CS, Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

48© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Algorithms & Design

Algorithm Fundamentals

Problem Solving

Machine Learning

Impacts of Algorithms and
Design

MS-ALG-11: Modify an algorithm to address a specific societal impact, ethical issue, or bias.

Boundary
Statement(s)

Students should propose modifications to an existing algorithm, verbally or through diagrams

or flowcharts, to make its outcomes more fair or inclusive. Students should focus on reducing

bias and improving equity through simple, conceptual modifications. For example, they might

suggest adding a language option to a chatbot or adjusting a music playlist generator to include

more diverse artists. Students should explain how their modification reduces bias or improves

equity.

Students are not expected to design complex algorithms from scratch or apply statistical

fairness techniques.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 12. Design computational technologies that empower and inform

users.

Disposition(s) Creativity, Critical Thinking, Reflectiveness, Curiosity

HS-ALG-08: Develop computational solutions using human centered design principles.

Boundary
Statement(s)

Students should design computational solutions that are inclusive and accessible by following

a human-centered design process. This includes researching user needs, exploring design

options, and anticipating the social and ethical impacts of their design. For example, when

creating a website, students might ensure sufficient color contrast, keyboard navigation, and

clear language for users with differing abilities.

Students are not expected to conduct large-scale user studies or meet every criterion of formal

accessibility standards (e.g., WCAG).

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Reflectiveness, Resourcefulness, Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

49© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Algorithms & Design

Algorithm Fundamentals

Problem Solving

Machine Learning

Impacts of Algorithms and
Design

HS-ALG-09: Evaluate the ethical implications, societal impacts, and potential biases of rule-based and
data-driven algorithms.

Boundary
Statement(s)

Students should evaluate how rule-based and data-driven algorithms can produce biased or

inequitable outcomes. They should identify potential sources of bias (e.g., unrepresentative

training data or biased design rules) and discuss the social impacts of these systems. For

example, students might analyze a hiring algorithm that filters candidates by zip code or a facial

recognition model that performs less accurately for certain skin tones. Students’ analysis should

remain conceptual, focusing on observable impacts and ethical reasoning.

Students are not expected to audit proprietary systems or use advanced statistical methods.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Reflectiveness, Persistence

HS-ALG-10: Articulate the values embedded in the design of algorithmic systems.

Boundary
Statement(s)

Students should identify and explain the values reflected in the design of algorithmic systems,

recognizing that every design choice involves prioritizing certain outcomes or perspectives.

Students should focus on identifying underlying priorities (e.g., efficiency, privacy, fairness,

transparency) that shape algorithmic behavior. For example, students might examine a social

media platform’s recommendation system and discuss how its design favors engagement and

attention over accuracy or civility.

Students are not expected to deconstruct proprietary systems or analyze full business models.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Persistence, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

50© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting

Code

Testing and Refining Code

Data Handling

Programming

Programming Fundamentals

EK-PRO-04: Create a sequence of commands to complete a simple task or express ideas.

Boundary
Statement(s)

Students should arrange a small set of directions in order (e.g., to help a character reach an

object, tell a short story, or follow a classroom routine). Using manipulatives, arrows, or simple

digital programs is appropriate. Unplugged activities are appropriate.

Students are not expected to write complex code or use control structures beyond sequencing.

Students are not required to use computers.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Creativity, Curiosity

E1-PRO-04: Create code from an algorithm that includes sequence and events to complete a task or
express ideas.

Boundary
Statement(s)

Students should read algorithms with sequential steps and an initiating event (e.g., “when start

is clicked”) and translate them into block-based code. Tasks such as moving a character or

navigating a robot through a maze are appropriate.

Students are not expected to design the algorithm themselves or use selection or iteration.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Creativity, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

51© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting

Code

Testing and Refining Code

Data Handling

E2-PRO-04: Create code from an algorithm that includes sequence, events, and iteration to complete
a task or express ideas.

Boundary
Statement(s)

Students should translate a provided algorithm that begins with an event and includes sequential

steps and loops into a working program. Writing an animation in a block-based language from a

storyboard or coding a robot to dance from an algorithm of arrows are appropriate.

Students are not expected to work with selection, variables, or nested loops, or to author the

original algorithm.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Critical Thinking, Persistence

E3-PRO-04: Develop code from a student-created algorithm that includes sequence, events,
iteration, and selection to complete a task or express ideas.

Boundary
Statement(s)

Students should implement their own or a classmate’s algorithm in a block-based environment

using events, loops for efficiency, and basic decisions. Students should also give credit to the

algorithm author and implementer. For example, turning a storyboard for a game that includes

a game character moving forward, jumping over obstacles repeatedly, and choosing different

paths when encountering a fork in the road into a program using a block-based programming

language is appropriate.

Students are not expected to use text-based languages or design multi-level projects. Students

are not required to implement a single program that includes every control structure.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Persistence, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

52© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting

Code

Testing and Refining Code

Data Handling

E4-PRO-04: Compare different programming solutions to the same problem based on their
correctness and clarity.

Boundary
Statement(s)

Students should compare two or more short programs or code segments that solve the same

task, noting which produces the correct result and which are easier to understand or follow.

Examples that use short block-based or text-based code segments are appropriate.

Students are not expected to create multiple versions themselves, evaluate efficiency, or

conduct formal code reviews.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Curiosity

E5-PRO-04: Create a novel program by modifying or combining elements of existing programs.

Boundary
Statement(s)

Students should make purposeful changes to a program by incorporating teacher-created, peer-

created, or other code segments to create a unique variation of the original program. Remixing

or adapting existing code to add new characters, actions, or outcomes is appropriate.

Students are not expected to write entirely original, complex programs from scratch or manage

large-scale integrations of multiple projects. Students are neither required nor restricted from

incorporating AI-generated code.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Resourcefulness, Critical Thinking

Standards end after Grade 5.

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

53© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting

Code

Testing and Refining Code

Data Handling

Program Development

Standards do not begin until Grade 1.

E1-PRO-05: Discuss how a program might affect different users.

Boundary
Statement(s)

Students should discuss ways programs may help or hinder different people. Using familiar

programs (e.g., read-aloud apps, drawing tools, simple games) and concrete examples is

appropriate. For example, students might express how a read-aloud app helps kids who are

learning to read or how a game with small buttons could be hard for someone with limited hand

mobility.

Students are not expected to analyze unfamiliar, complicated, or adult-oriented software,

explain how programs are built, or address security or accessibility root causes.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Sense of Belonging in CS, Curiosity

E2-PRO-05: Collaborate with a partner to develop a program that solves a problem or expresses an
idea.

Boundary
Statement(s)

Students should work with a partner to iteratively plan, create, and test a grade-appropriate

block-based program. Collaboratively planning, coding, and testing a program that includes

events, sequencing, and simple iteration is appropriate.

Students are not expected to build complex or large-scale programs or use programming

constructs like selection and variables.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Creativity, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

54© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting

Code

Testing and Refining Code

Data Handling

E3-PRO-05: Use structured, constructive feedback to improve programs.

Boundary
Statement(s)

Students should give and apply specific, helpful suggestions to improve the function or design

of their programs. Incorporating feedback from peers, teachers, or users into a program is

appropriate.

Students are not expected to interpret complex error reports, use advanced tools, or overhaul

program structure or design. Students are not required to defend against all critiques or

implement all feedback.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Persistence

E4-PRO-05: Collaborate with a team by offering a meaningful contribution to creating a program.

Boundary
Statement(s)

Students should work in small groups to plan and create a simple program, contributing ideas,

code segments, or testing feedback while practicing respectful communication, active listening,

and shared tasking. Adding a feature, fixing an error, improving a design element, or helping

organize the code are appropriate.

Students are not expected to use professional collaboration tools, manage large projects, or

apply formal methodologies.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Disposition(s) Sense of Belonging in CS, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

55© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting

Code

Testing and Refining Code

Data Handling

E5-PRO-05: Construct individual components of a program that are collaboratively assembled into a
working project.

Boundary
Statement(s)

Students should individually build small code components and integrate them with teammates

into a complete functional program. For example, in a block-based environment, one student

might construct the code component for a scoring system using variables and selection, while

another constructs the player movement component, and they then integrate and test these

pieces to ensure the final project works.

Students are not expected to use version control or design full system architecture.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Resourcefulness, Persistence

MS-PRO-12: Use procedures to structure code for clarity and reusability.

Boundary
Statement(s)

Students should identify repetition in code, define a clearly named procedure to perform the

repeated task, call it where needed, and explain benefits of using the procedure (e.g., less

repetition, easier updates, clearer code).

Students are not expected to write procedures with parameters or return values. Students are

not expected to manage many interacting procedures.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Creativity, Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

56© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting

Code

Testing and Refining Code

Data Handling

MS-PRO-13: Use reference documentation and online resources to write, debug, and improve
programs.

Boundary
Statement(s)

Students should use search engines with specific keywords to find reliable programming

information that helps them write, debug, and refine their programs. They should use teacher-

provided or self-selected documentation to understand functions or blocks, and search for

common error messages to identify causes and solutions.

Students are not expected to conduct open-ended research on complex programming

problems, read professional-level documentation, or apply coding concepts beyond their grade

level.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Resourcefulness, Curiosity

MS-PRO-14: Explain the importance of attribution and intellectual property in programming.

Boundary
Statement(s)

Students should define intellectual property in programming and explain why giving credit

to original creators matters. They should recognize that programming makes use of multiple

artifacts (e.g., code, images, music, and text), and understand the difference between learning

from others’ code and plagiarizing it. Identifying whether code is open source, free to use, or

proprietary, and providing basic attribution in their own work, are appropriate. Students should

focus on ethical awareness and responsible use of others’ work.

Students are not expected to study copyright law, fair use, or licensing in depth, or to license

their own code.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

57© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting

Code

Testing and Refining Code

Data Handling

MS-PRO-15: Apply inclusive collaboration practices to develop a program.

Boundary
Statement(s)

Students should actively share ideas during planning, provide and receive constructive feedback

in all stages of program development, and collaborate effectively on shared digital tools.

Students should focus on productive teamwork and inclusive communication. Practicing equal

participation, clear communication, and respect for others’ contributions is appropriate.

Students are not expected to use formal collaboration methods like Agile or Scrum, or

professional project management software.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Sense of Belonging in CS

HS-PRO-11: Create a modular program that uses procedures, modules, or objects to improve
reusability and readability.

Boundary
Statement(s)

Students should decompose a complex problem into smaller, manageable parts and implement

each part as a distinct procedure, module, or object. Students should focus on creating clear,

reusable, and well-organized code. For example, a game program might separate player

movement, scoring, and enemy behavior into separate functions or objects.

Students are not expected to use advanced software design patterns or deep inheritance

structures.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

58© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting

Code

Testing and Refining Code

Data Handling

HS-PRO-12: Use documentation, libraries, Application Programming Interfaces (APIs), and
development tools to write, debug, and improve programs.

Boundary
Statement(s)

Students should locate and use external resources to support their programming, including

built-in documentation, common libraries, simple APIs, and features of an Integrated

Development Environment (IDE) (e.g., debuggers or syntax highlighting). Students should focus

on effectively using available resources to enhance programs. For example, using a math library

instead of writing a trigonometric function from scratch is appropriate.

Students are not expected to create APIs or advanced development tools, or to debug complex

systems.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Resourcefulness

HS-PRO-13: Apply proper attribution and respect intellectual property in digital artifacts.

Boundary
Statement(s)

Students should apply intellectual property principles by giving accurate credit for any code

or digital media created by others. They should demonstrate ethical practice by documenting

sources according to their terms of use or license. For example, a student creating a game might

include a “Credits” section listing each asset’s creator, source, and license.

Students are not expected to master copyright law.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

59© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting

Code

Testing and Refining Code

Data Handling

HS-PRO-14: Collaborate on a programming project using a defined workflow that includes design
documentation, version control, and clear task roles.

Boundary
Statement(s)

Students should use collaborative workflows to organize group projects (e.g., assigning roles,

maintaining shared design documents, and using basic version control tools to manage

changes). Students should focus on learning structured teamwork practices with accessible,

classroom-ready tools. For example, a group of students might use a project management tool

to assign tasks, a collaborative document (e.g., Google Docs) for design specifications, and a

version control system (e.g., Git) to manage code changes.

Students are not expected to use professional-grade tools or manage large-scale projects.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Disposition(s) Sense of Belonging in CS, Persistence

HS-PRO-15: Translate an algorithm written in pseudocode into a working program that includes
sequence, iteration, selection, variables, procedures, parameters, and data structures.

Boundary
Statement(s)

Students should convert a provided pseudocode algorithm into a functioning program that

uses core programming concepts (variables, sequence, selection, iteration, data structures,

procedures, parameters). Students should focus on understanding how to implement algorithms

accurately in code. For example, translating pseudocode for calculating the average of a list into

executable code is appropriate.

Students are not expected to create the pseudocode themselves or use a specific programming

language.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Critical Thinking, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

60© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting
Code

Testing and Refining Code

Data Handling

Reading and Documenting Code

EK-PRO-05: Describe how code has completed a task.

Boundary
Statement(s)

Students should observe and describe, in their own words, what happens when simple code

runs (e.g., “the robot moved three steps,” “the character turned red”). Gestures or short phrases

are appropriate.

Students are not expected to read text-based code, explain why it works, use technical

vocabulary, or explain advanced programming concepts.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Critical Thinking

E1-PRO-06: Explain the function of code that includes sequence and events.

Boundary
Statement(s)

Students should explain what each step in a short program does and how an event triggers what

happens next. Expressing what happens when a sequence of movement blocks runs or when a

tap or collision event starts an animation are appropriate.

Students are not expected to analyze advanced control structures (e.g., loops, conditionals),

formal flow, syntax, or efficiency.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 6. Define computational problems.

Disposition(s) Reflectiveness, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

61© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting
Code

Testing and Refining Code

Data Handling

E2-PRO-06: Explain the steps taken during program development, recognizing the contributions of
others in the process.

Boundary
Statement(s)

Students should describe, in simple sequence, what they did first, next, and last while creating a

program, and acknowledge classmates’ and teachers’ help. Teacher-provided graphic organizers

or sentence starters are appropriate.

Students are not expected to use advanced vocabulary, formal documentation, or complex

debugging narratives.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Sense of Belonging in CS, Reflectiveness

E3-PRO-06: Articulate how a specific segment of code contributes to the overall purpose of a
program.

Boundary
Statement(s)

Students should use age-appropriate academic language to describe what a code segment does

and how it supports the program’s goal. For example, students sharing their understanding via

annotated screenshots, prompted explanations, or brief presentations is appropriate.

Students are not expected to conduct formal code reviews or be the original author of the code.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

62© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting
Code

Testing and Refining Code

Data Handling

E4-PRO-06: Document a program to clarify its functionality.

Boundary
Statement(s)

Students should use simple documentation (e.g., brief comments, labeled diagrams, short

descriptions) to explain what their program does and how it works. The goal is to make the

program easier for others to understand or modify.

Students are not expected to produce professional design documents or complex explanations

of code structure, use version control, or write industry-style technical prose.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Disposition(s) Critical Thinking, Resourcefulness

E5-PRO-06: Create embedded or external documentation for a programming project.

Boundary
Statement(s)

Students should produce documentation common to their programming language environment

(e.g., in-code comments, project notes) describing purpose, use, and code organization.

Comments, virtual sticky notes, program descriptions or an external document are all

appropriate options.

Students are not expected to follow professional templates or produce formal documentation

sets. While teachers may opt to introduce guidelines or templates, students are not required to

follow any specific guidelines for documentation.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

63© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting
Code

Testing and Refining Code

Data Handling

MS-PRO-16: Analyze how a segment of code works by identifying the roles of iteration, selection,
variables, and procedures.

Boundary
Statement(s)

Students should demonstrate how a segment of code works. Tracing the execution of a code

segment and the value of variables through sequences of code (e.g., step-by-step in order),

iteration (e.g., repeated sections of code), selection, and procedures (e.g., separate modules of

code) are appropriate.

Students are not expected to debug or test the code, or analyze procedures with parameters.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking

MS-PRO-17: Examine AI-generated code for accuracy and usability in a programming project.

Boundary
Statement(s)

Students should design and run simple test cases on AI-generated code, use varied inputs to

check behavior, and report how well the code meets the stated purpose and if the code includes

any bias. Students should focus on comparing results to the intended goal.

Students are not expected to generate code with AI themselves or understand every

implementation detail.

Pillar(s) and
Practice(s)

Computational Thinking: 9. Test and refine computational artifacts.

Human-Centered Design: 11. Use iterative design processes.

Disposition(s) Curiosity, Reflectiveness, Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

64© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting
Code

Testing and Refining Code

Data Handling

HS-PRO-16: Analyze how a segment of code works, including the role of sequence, iteration,
selection, variables, procedures, parameters, and data structures.

Boundary
Statement(s)

Students should read existing code and explain how parts interact to achieve the goal (e.g.,
variables hold state, loops repeat, conditionals branch, procedures encapsulate logic). For
example, students could analyze a segment of code for a simple guessing game and explain how a
variable stores the secret number, how a while loop continues until the correct number is guessed,
and how an if/else statement provides feedback on whether the guess was too high or too low.

Students are not expected to analyze complex algorithms or systems with many interconnected
data structures.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking, Persistence

HS-PRO-17: Evaluate AI-generated code for accuracy, reliability, and alignment with program
requirements.

Boundary
Statement(s)

Students should evaluate AI-generated code by testing it against predetermined requirements
and verifying that it produces correct and reliable results. They should analyze whether the code
meets its intended purpose, handles a variety of inputs appropriately, and follows any given
design constraints (e.g., using a specific data structure or algorithm). Students should focus
on evaluating the quality and reliability of the output, not the internal mechanisms of the AI
system. For example, a student using an AI tool to generate a function that calculates an average
should test edge cases (e.g., empty lists, single values, mixed positive and negative numbers) and
confirm that outputs are accurate and consistent with the task description.

Students are not expected to understand the underlying machine learning models or algorithms
that power the AI tools.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

65© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting

Code

Testing and Refining Code

Data Handling

Testing and Refining Code

EK-PRO-06: Identify steps in a sequence of commands that do not work as expected.

Boundary
Statement(s)

Students should recognize which step in a simple sequence is not working correctly or is

causing a problem. Observing and identifying a block that led to an unexpected result in a

block-based coding app or a command card that was incorrect in an unplugged activity are

appropriate.

Students are not expected to explain why the error occurred, analyze program logic, or use

formal debugging strategies.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Persistence

E1-PRO-07: Debug programs that include sequence and events.

Boundary
Statement(s)

Students should identify and fix simple errors in block-based programs they have made or were

given. Students should focus on identifying and correcting simple, visible mistakes. For example,

if a character is supposed to move and then jump, but the code blocks are in the wrong order,

the student should be able to identify the problem and reorder the blocks.

Students are not expected to find complex logical errors or debug programs that include loops

or conditionals.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

66© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting

Code

Testing and Refining Code

Data Handling

E2-PRO-07: Debug programs that include sequence, events, and iteration.

Boundary
Statement(s)

Students should test a simple, block-based program, find a bug, and fix it. Students should

focus on locating and correcting one obvious bug in a short program that includes iteration.

For example, if a character draws only three sides of a square instead of four, students should

identify the issue and adjust the repeat block.

Students are not expected to fix multiple or complex errors or explain problems using technical

terms.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Persistence

E3-PRO-07: Debug iteration errors and selection errors in a program.

Boundary
Statement(s)

Students should identify and correct errors in programs that use loops and in programs that use

conditional logic. Debugging one level of iteration and selection is appropriate.

Students are not expected to debug nested iterations or selections.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

67© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting

Code

Testing and Refining Code

Data Handling

E4-PRO-07: Debug programs that include sequence, events, iteration, and selection.

Boundary
Statement(s)

Students should locate and fix common logical or structural errors in programs using sequence,

events, loops, and conditional choices. For example, debugging a block-based program where

a character does not move when clicked, a loop runs too many times, or an if block triggers the

wrong action is appropriate.

Students are not expected to debug syntax errors in text-based languages or correct complex

programs involving variables, functions, or nested conditions or loops.

Pillar(s) and
Practice(s)

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Persistence

E5-PRO-07: Debug programs using systematic strategies.

Boundary
Statement(s)

Students should apply more than one systematic debugging strategy. Strategies such as

reproducing the problem, reading error messages, tracing code, changing one element at

a time, or adding temporary outputs (e.g., sounds or print statements) to locate issues are

appropriate. Students should focus on using clear, repeatable methods to find and fix syntax,

logic, or runtime errors.

Students are not expected to use professional debugging tools or automated testing

frameworks.

Pillar(s) and
Practice(s)

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Persistence, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

68© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting

Code

Testing and Refining Code

Data Handling

MS-PRO-18: Use standard practices to test, debug, document, and peer-review code.

Boundary
Statement(s)

Students should apply systematic testing and debugging techniques to find and fix errors, use

clear comments to document their code, and give and receive constructive feedback during

peer code reviews.

Students are not expected to use advanced debugging software, unit testing frameworks,

version control systems, or follow documentation standards beyond basic commenting

practices.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Persistence, Critical Thinking, Resourcefulness, Reflectiveness, Sense of Belonging in CS

MS-PRO-19: Refine a program based on user feedback to improve its usability and accessibility.

Boundary
Statement(s)

Students should discuss with peers user feedback, consider the needs of diverse users, and

identify which suggestions would most improve a program’s usability or accessibility. Students

should focus on developing awareness of others’ needs and incremental improvement.

Students are not expected to perform formal audits or implement complex accessibility

frameworks.

Pillar(s) and
Practice(s)

Computational Thinking: 9. Test and refine computational artifacts.

Human-Centered Design: 11. Use iterative design processes.

Disposition(s) Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

69© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting

Code

Testing and Refining Code

Data Handling

HS-PRO-18: Evaluate a program’s alignment with design specifications and responsible design values,
including its correctness, effectiveness, and user experience.

Boundary
Statement(s)

Students should be able to systematically evaluate a program they have created or a program created
by others by applying a logical process to ensure it works as intended and meets the original design
plan. A concrete example of this in a high school class would be a student creating a hangman game.
They would evaluate its correctness by testing every possible input, including incorrect letters,
multiple correct letters, and invalid characters, to ensure the program never crashes. In addition, they
would include responsible design (ethical, social, environment, or human-centric values).They would
evaluate its user experience by checking if the game responds quickly and provides clear feedback to
the user and that it meets responsible design values. Finally, they would evaluate its alignment with
design specifications by comparing the finished program to their initial plan, making sure all features,
such as a word bank and a counter for incorrect guesses, are present and functional.

Students are not expected to use formal verification methods. Students are not required to master
industry-specific tools.

Pillar(s) and
Practice(s)

Computational Thinking: 9. Test and refine computational artifacts.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Reflectiveness, Critical Thinking

HS-PRO-19: Refine a program based on user feedback and testing results, applying responsible design
values to improve functionality, usability, accessibility, accuracy, and efficiency.

Boundary
Statement(s)

Students should use testing results and user feedback to make meaningful refinements to a program’s
functionality, usability, and accessibility. For example, a student might add a help command, simplify
instructions, or adjust text size and contrast to improve readability and accessibility.

Students are not expected to correct every functional or user-related issue or achieve full
optimization.

Pillar(s) and
Practice(s)

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Human-Centered Design: 11. Use iterative design processes.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

70© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting

Code

Testing and Refining Code

Data Handling

Data Handling

EK-PRO-07: Identify everyday gestures and symbols that represent information people use to make
choices.

Boundary
Statement(s)

Students should recognize and explain common symbols, signs, and gestures they see in familiar

environments such as home, school, or playgrounds. Students should be able to state what each

symbol means or what action it signals. Symbols with clear, immediate meanings are appropriate

(e.g., stop signs, traffic lights, a teacher’s raised hand for quiet, thumbs up/down, or pictures on

classroom labels).

Students are not expected to interpret abstract or unfamiliar symbols, read written words on

signs, or analyze why specific symbols were chosen. Students are not required to understand

cultural variations, complex decision-making, or digital icons requiring prior background

knowledge.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking

E1-PRO-08: Identify terms that refer to values that change over time in everyday life.

Boundary
Statement(s)

Students should name real-world examples of information that changes, such as temperature,

time, score, or age. For example, students can identify that the score of a game changes, the

temperature outside changes, or their age changes each year. Students should recognize that

some information changes while other information stays the same.

Students are not expected to use the formal term variable or understand the programming

concept of assignment.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

71© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting

Code

Testing and Refining Code

Data Handling

E2-PRO-08: Label different representations of information with a name and whether its value is
constant or changes.

Boundary
Statement(s)

Students should give logical names to pieces of information they encounter in real life and

determine whether the value of each piece of information changes or stays constant. Students

should focus on describing information in meaningful, age-appropriate terms. Examples from

digital contexts (e.g., score in a game) and non-digital contexts (e.g., temperature in an oven,

day of the week) are appropriate.

Students are not expected to use programming vocabulary or write code.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking, Reflectiveness

E3-PRO-08: Identify the variables being stored and manipulated in a program.

Boundary
Statement(s)

Students should read completed programs to find variables. Students should recognize that

each variable has a unique name that must be spelled consistently. Identifying variables that

track a game score, user input, or collected data is appropriate.

Students are not expected to assign variables specific data types (e.g., string, integer, Boolean)

or write code themselves.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

72© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting

Code

Testing and Refining Code

Data Handling

E4-PRO-08: Trace how data flows through a program and changes variable values during execution.

Boundary
Statement(s)

Students should follow short, age-appropriate programs to observe how data moves through

the code and how variable values change as the program runs. Students should focus on tracing

and explaining observable changes to variable values. For example, they might trace how a

score counter increases with each correct answer or how a temperature tracker updates as new

readings are added.

Students are not expected to design variable-driven programs, work with multiple data types, or

understand memory allocation, scope, or data structures.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Persistence

E5-PRO-08: Use variables to store, compare, and modify data within a program.

Boundary
Statement(s)

Students should use variables in block-based or beginner text-based environments to store,

compare, and update data that affects program behavior. Examples include tracking a player’s

score, comparing time values to trigger an event, or updating health or points after an action.

Students are not expected to manage complex data types, arrays, or mathematical formulas

involving multiple variables. Students are not required to understand variable scope.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

73© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting

Code

Testing and Refining Code

Data Handling

MS-PRO-20: Use appropriate data types and structures to store, modify, update, and iterate over data
within a program.

Boundary
Statement(s)

Students should select and use common data types (e.g., numbers, strings, Boolean values) and

basic data structures (e.g., lists, arrays, simple tables) to store, organize, and process information.

They should be able to modify and update data elements and iterate over collections (e.g.,

looping through a list of scores to find an average).

Students are not expected to implement advanced data structures (e.g., trees, graphs, linked

lists, or multi-dimensional arrays) or use professional programming syntax.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Human-Centered Design: 11. Use iterative design processes.

Disposition(s) Critical Thinking, Persistence, Resourcefulness, Curiosity

HS-PRO-20: Create a program that uses appropriate data structures to store, access, and manipulate
data.

Boundary
Statement(s)

Students should design and implement programs that use data structures such as arrays, lists, or

dictionaries to organize, access, and modify data effectively. Students should focus on selecting

and applying suitable structures to manage data efficiently. For example, students might create

a program that stores and retrieves information about daily tasks, chores, or student names and

grades.

Students are not expected to implement advanced data structures like linked lists, stacks,

queues, trees, or graphs.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Critical Thinking, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

74© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Programming

Programming Fundamentals

Program Development

Reading and Documenting

Code

Testing and Refining Code

Data Handling

HS-PRO-21: Compare fundamental data types and their uses.

Boundary
Statement(s)

Students should analyze the characteristics and appropriate uses of fundamental data types (i.e.,

integers, floats, strings, Booleans) and compare and contrast how choosing different data types

affects program behavior and accuracy. Students should focus on reasoning about data type

selection for different programming needs. For example, students might determine that a login

system might be created using a string for the username, an integer for the user’s age, and a

Boolean to check if the user is logged in.

Students are not expected to understand how data types are stored in memory or perform

low-level data optimization.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

75© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Data & Analysis

Data Fundamentals

Data Processing

Data Investigation

Impacts of Data Science

Data & Analysis

Data Fundamentals

EK-DAA-08: Demonstrate how people create and collect data to help answer questions.

Boundary
Statement(s)

Students should collect data to answer a question about a grade-appropriate topic involving

two to three variables. Having students wonder about the world to create questions to answer

is appropriate. Collecting simple survey data and creating graphs as a class in order to answer a

question is appropriate.

Students are not expected to work independently. Students are not required to use digital tools

or collect large sets of data.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Persistence, Curiosity

E1-DAA-09: Use multiple methods, including observation, measurement, and survey, to collect both
numeric and non-numeric data.

Boundary
Statement(s)

Students should use simple observation, counting, and surveys to collect data. Examples include

counting objects, measuring lengths with a ruler, or asking classmates about favorite colors.

Students are not expected to analyze or organize data into complex charts. Students are not

required to use digital tools or formal statistical methods.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

76© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Data & Analysis

Data Fundamentals

Data Processing

Data Investigation

Impacts of Data Science

E2-DAA-09: Compare numeric and non-numeric types of data in terms of how they are collected and
what they can tell us.

Boundary
Statement(s)

Students should compare how numeric data can be used for math and measurement, while

non-numeric data can be used to sort, group, and describe. Having students identify the kinds of

pets the class has (non-numeric data), count the total number of pets in each category (numeric

data), and make simple comparisons (e.g., more students have cats vs dogs) is appropriate.

Students are not expected to perform more sophisticated data transformations or analyses,

nor are students expected to identify finer-grained data types (e.g., integers and characters).

Students are not required to use technology to collect or compare different types of data.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Reflectiveness

E3-DAA-09: Evaluate numeric and non-numeric data for accuracy and completeness.

Boundary
Statement(s)

Students should focus on checking for missing data and recognizing data that seems

unreasonable (e.g., values that are much too large or much too small or data that is the wrong

type). Students may use a survey to collect data which is recorded on a chart. Students may also

use data supplied by the teacher.

Students are not expected to create complex graphs or work with large datasets. Students are

not required to use technology for collection, recording, or evaluation of data.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Disposition(s) Critical Thinking, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

77© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Data & Analysis

Data Fundamentals

Data Processing

Data Investigation

Impacts of Data Science

E4-DAA-09: Organize collected data into tables using digital tools, with rows representing records
and columns representing attributes.

Boundary
Statement(s)

Students should practice organizing small sets of collected or provided data into simple tables,

ensuring that each row represents one record (e.g., a survey respondent, a pet) and each column

represents an attribute (e.g., age, favorite color, type of animal). Students may use paper-based

tables and templates prior to using digital tools for this work.

Students are not expected to design complex databases, manage large datasets, or use

advanced spreadsheet functions. Students do not need to understand relational databases,

formulas, or data visualization techniques.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Critical Thinking

E5-DAA-09: Use digital tools to collect and organize different types of data.

Boundary
Statement(s)

Students should demonstrate their ability to use digital tools, such as simple surveys and

spreadsheets, to collect and organize data. Students should collect and distinguish between

quantitative (numeric) and qualitative (descriptive and non-numeric) data. When organizing the

data, students should use a computational tool to efficiently sort and group similar data (e.g.,

sort from highest to lowest temperature, or sort non-numeric responses alphabetically).

Students are not expected to create their own data collection tools from scratch, nor are they

expected to analyze, interpret, or visualize the data.

Pillar(s) and
Practice(s)

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

78© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Data & Analysis

Data Fundamentals

Data Processing

Data Investigation

Impacts of Data Science

MS-DAA-21: Evaluate how different levels of precision and granularity in data collection affect
accuracy, storage, and analysis.

Boundary
Statement(s)

Students should explain the difference between precision and granularity in data collection

and evaluate how these choices affect data accuracy, storage requirements, and interpretation.

Students should identify and explain situations in which higher precision or granularity might

be more important. For example, students might compare tracking daily step counts (lower

granularity, less storage) versus tracking steps every minute (higher granularity, more storage), or

recording ages in years (lower precision) versus years and months (higher precision). Comparing

medical monitoring data (requiring high precision and granularity for patient safety) with casual

fitness tracking data (where lower precision and granularity are sufficient) is appropriate.

Students are not expected to collect data at varying precision or granularity levels themselves.

Students are not expected to understand the technical details of data collection processes.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Inclusive Collaboration: 4. Manage computing projects.

Disposition(s) Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

79© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Data & Analysis

Data Fundamentals

Data Processing

Data Investigation

Impacts of Data Science

MS-DAA-22: Explain how data and its associated metadata can be used to answer questions.

Boundary
Statement(s)

Students should be able to explain how data and metadata serve different but complementary

purposes when answering questions. Students should understand that metadata is data about

data—it provides context that helps interpret the primary data content. For example, a photo’s

image data shows what was captured, while its metadata (e.g., timestamp, location, camera

settings) provides context about when, where, and how the photo was taken. Students should

be able to use computational tools to view metadata (e.g., viewing file properties, examining

web page source code). Students should recognize that metadata can be collected automatically

without their explicit knowledge (e.g., their phone adding location and time data to photos).

Students are not expected to understand technical standards for metadata formats or structures.

Students are not required to focus on any particular metadata tool or to manually create or edit

metadata fields. Students are not expected to provide exhaustive lists of all possible metadata

types for different file formats.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

80© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Data & Analysis

Data Fundamentals

Data Processing

Data Investigation

Impacts of Data Science

HS-DAA-22: Use a digital tool to generate data that fits certain parameters for use in simulations.

Boundary
Statement(s)

Students should be able to generate synthetic data using a digital tool. Students should be able
to write a simple program or use a spreadsheet function to create a dataset that meets specific
criteria (e.g., generate a set number of data points within a specific range of values or to create a
certain distribution). For example, students could generate random initial velocities and launch
angles within specified ranges to serve as inputs for a projectile motion simulation. Students
should focus on creating data that can be used by a pre-existing simulation or model.

Students are not expected to build the simulation from scratch. Students are also not expected
to use advanced statistical methods or write complex algorithms to generate the data.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Human-Centered Design: 12. Design computational technologies that empower and inform users.

Disposition(s) Critical Thinking, Persistence, Resourcefulness

HS-DAA-23: Create a data dictionary that describes the names and types of attributes, allowable
values/ranges for each attribute, and logical relationships between variables in a dataset.

Boundary
Statement(s)

Students should be able to create a data dictionary for a dataset, including the names of all
attributes (variables), their data types, and the range of acceptable values for each. The data
dictionary should also describe the logical connections between variables, such as how a
particular response on a survey question might lead to missing responses on other questions
due to survey skip logic. For example, students could analyze a dataset of anonymized survey
responses from a school, and then create a data dictionary that lists each question as an attribute,
defines the response format (e.g., integer, text string), and specifies the valid range of responses
(e.g., a rating scale might allow the numbers 1-5 and “No Response” if the question was skipped).

Students are not expected to create the dataset itself or handle extremely large, complex datasets
that require specialized tools or databases.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Critical Thinking, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

81© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Data & Analysis

Data Fundamentals

Data Processing

Data Investigation

Impacts of Data Science

Data Processing

Standards do not begin until middle school.

MS-DAA-23: Use a digital tool to sort, filter, group, aggregate, and otherwise transform quantitative
and qualitative data.

Boundary
Statement(s)

Students should be able to access and use a spreadsheet program or other age-appropriate

digital tool to apply data operations (e.g., sort, filter, group, aggregate) to a given set of data.

Students can work with a pre-existing data set of a grade-level-appropriate size. Students should

be able to explain why they are using each operation to transform their data and how it will help

answer their data question (e.g., “I am filtering the data to show only results from 2023 so I can

analyze recent trends,” or “I am grouping by product type and calculating total sales to find our

best-selling category.”)

Students do not need to collect data to fulfill this standard. Students also do not need

to perform advanced data organization or cleaning. Students do not need to master any

computational programs or software to transform data.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

82© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Data & Analysis

Data Fundamentals

Data Processing

Data Investigation

Impacts of Data Science

MS-DAA-24: Analyze options to address data quality issues.

Boundary
Statement(s)

Students should be able to identify common data quality issues, such as missing data and

incorrect formatting as well as investigate their causes. Students should also be able to develop

multiple approaches for addressing data quality issues, such as deleting records with a lot of

missing attributes, reformatting data that doesn’t conform to expected values, or leaving the

data as is. Students should evaluate the outcomes of each approach to addressing data quality

and consider how removing data can introduce bias into a data set. Students can be provided

with a data set to analyze.

Students are not expected to choose a “correct” approach for addressing data quality. Students

should be focused on analyzing and evaluating solutions. Students are not expected to use

specialized software programs or understand advanced statistical corrections. Students are not

expected to work with large, complex datasets nor do they need to generate their own data with

errors to analyze. Students are not expected to use automation tools to identify errors. Students

should be focused on the human oversight of errors in data to prepare them to understand how

decisions made by humans in the development of automation tools can impact others.

Pillar(s) and
Practice(s)

Computational Thinking: 9. Test and refine computational artifacts.

Human-Centered Design: 11. Use iterative design processes.

Disposition(s) Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

83© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Data & Analysis

Data Fundamentals

Data Processing

Data Investigation

Impacts of Data Science

HS-DAA-24: Use a digital tool to clean and organize text-based data.

Boundary
Statement(s)

Students should be able to use a digital tool to prepare text-based data for analysis. This

includes handling inconsistencies (e.g., variations in capitalization or spacing), correcting errors

(e.g., misspellings or invalid entries), and structuring the data appropriately (e.g., separating

combined fields or standardizing formats). Students should recognize when regular expressions

can be used for pattern matching in text. Using a spreadsheet program or a simple programming

script to convert inconsistent date formats, remove duplicate entries, or separate a single

text column into multiple columns (e.g., first name and last name) within a dataset of survey

responses is appropriate.

Students are not expected to build cleaning tools from scratch. Students are not required to

handle large-scale, unstructured data like social media feeds.

Pillar(s) and
Practice(s)

Computational Thinking: 9. Test and refine computational artifacts.

Human-Centered Design: 11. Use iterative design processes.

Disposition(s) Persistence, Critical Thinking

HS-DAA-25: Evaluate different approaches to verifying consistency and compliance with expected
data types, values, and ranges.

Boundary
Statement(s)

Students should be able to identify and evaluate different methods for ensuring that data is

clean, accurate, and ready for use. This includes examining data for expected formats, values,

and ranges. For example, students could evaluate different approaches for validating a dataset of

customer birthdates to ensure all entries are in the correct format (e.g., MM/DD/YYYY) and fall

within a reasonable range of years.

Students are not expected to write or implement scripts or use statistical models to perform

data validation.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

84© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Data & Analysis

Data Fundamentals

Data Processing

Data Investigation

Impacts of Data Science

Data Investigation

EK-DAA-09: Investigate a question that can be answered by collecting data in students’ everyday
environments.

Boundary
Statement(s)

Students should pose a simple, concrete question that can be answered by gathering data in

familiar contexts (e.g., “How many students ride the bus?”; “What is the most common favorite

fruit in our class?”).

Students are not required to use computational tools. Students are not expected to design

experiments or other types of research studies, use statistics, or analyze large datasets.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Disposition(s) Curiosity

E1-DAA-10: Compare questions that can be answered with data investigations and questions that are
answered through other means.

Boundary
Statement(s)

Students should focus on questions that are developmentally relevant (e.g., pets, recess

activities, favorite lunch items) and sort examples of questions into “data” or “non-data”

categories (e.g., “How many students have pets?” vs. “What is your favorite animal?”). Creating

oral explanations, drawings, or simple charts is appropriate. Connecting data/non-data

questions to community norms (e.g., some data may be personal and not appropriate to collect)

is appropriate.

Students are not expected to work with large data sets or use computational tools. Students

are not required to come up with complicated questions or do math that is beyond first grade

expectations.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

85© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Data & Analysis

Data Fundamentals

Data Processing

Data Investigation

Impacts of Data Science

E2-DAA-10: Develop a question that can be answered with data.

Boundary
Statement(s)

Students should brainstorm and refine a question that can be answered with data. Students

must understand that the best way to answer some questions is not through data collection. For

example, a student might start with a vague question like “What colors do kids like?” and refine

it to “What is the most common favorite color in our class?” Students can develop questions

related to counting and frequency, comparisons, interpretation of tally charts, bar graphs, and

pictographs, and making simple predictions and inferences.

Students are not required to use computational tools for data collection or creation of data

representations. Students are not required to use statistical concepts beyond grade level (e.g.,

mean, median, mode, probability). Students are not required to create or interpret graphs with

complex scales or work with large datasets.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking, Curiosity

E3-DAA-10: Investigate a data question involving relationships between multiple attributes.

Boundary
Statement(s)

Students should investigate how two or more attributes in a dataset relate to each other.

Investigating the relationship between sunlight and water on the height of a plant, where

students collect data on all three attributes and examine how height changes with different

combinations of sunlight and water, is appropriate.

Students are not expected to perform statistical analysis. Students are not expected to work with

more than two or three attributes. Students are not required to use digital equipment to collect

or analyze data.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

86© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Data & Analysis

Data Fundamentals

Data Processing

Data Investigation

Impacts of Data Science

E4-DAA-10: Write a brief narrative that includes at least one data visualization to report the process
and results of a data investigation, using computing tools.

Boundary
Statement(s)

Students should create a short narrative and data visualization through the use of accessible

digital tools (e.g., spreadsheets, slides, age-appropriate data visualization applications). A

narrative that explains how they collected data and what the data shows, using both text and a

bar chart or other basic chart or graph, is appropriate.

Students are not expected to produce statistical analyses, interactive dashboards, or complex

data visualizations. Students are not required to have knowledge of data visualization design

principles beyond choosing a graph type that is appropriate for the data being presented.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Creativity, Reflectiveness

E5-DAA-10: Analyze a dataset to identify the nature and possible sources of variability in the data.

Boundary
Statement(s)

Students should identify patterns and variations in a dataset and distinguish between typical

values and outliers. Students should look for trends or regularities in data and identify

relationships between different variables. Understanding that data can vary from one

observation to another and distinguishing between typical values and outliers is appropriate.

Students are not required to calculate statistical measures (e.g., mean, median, standard

deviation) or perform statistical tests.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

87© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Data & Analysis

Data Fundamentals

Data Processing

Data Investigation

Impacts of Data Science

MS-DAA-25: Use computational tools to identify relationships among variables in a dataset and make
classifications or predictions.

Boundary
Statement(s)

Students should use spreadsheets or programming tools to identify relationships between

different variables in a large dataset. Once a relationship is identified it can be used to make

a prediction. Students should critically analyze their predictions to see if they make sense

for unknown conditions or input. Students should recognize that many artificial intelligence

systems work by identifying relationships and making predictions.

Students are not required to understand statistics beyond what is covered in sixth grade math

standards.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Reflectiveness, Critical Thinking

MS-DAA-26: Create data visualizations to show how different design choices can impact the
interpretation of the same data.

Boundary
Statement(s)

Students should generate multiple visualizations for the same data to highlight a key insight they

discovered. Students should critically analyze whether the different visualizations are equally

clear and accurate, visually appealing, and accessible to all people, including those with visual

or auditory disabilities. Students should also critically analyze the visualizations to see if they

convey the same message despite different design choices. Students can use representations

other than visual to communicate insights from data. Students can work with pre-existing data.

Students are not required to use computational tools, though they may be helpful.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Creativity, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

88© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Data & Analysis

Data Fundamentals

Data Processing

Data Investigation

Impacts of Data Science

MS-DAA-27: Summarize a data investigation process by describing the question, the data collection
and analysis methods, potential biases and limitations, and the evidence supporting the conclusion.

Boundary
Statement(s)

Students should describe a data investigation process they completed themselves or with a

team, or interview someone else and report on their process. Students should describe the

motivation for the data investigation, all decisions made in the process, whether the results are

satisfactory or as expected, and any limitations of the investigation.

Students are not expected to collect actual data but rather reflect on a process that is already

completed. Students are not required to use computational tools but they may find them

helpful.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness

HS-DAA-26: Use computational tools to create data visualizations of multivariate data sets to answer
a question, classify, or make predictions.

Boundary
Statement(s)

Students should be able to use computational tools (e.g., Excel, CODAP) to create data

visualizations (e.g., scatter plots, line graphs, stacked bar charts, heat maps) that represent

the results of their data investigations. For example, to represent the school’s recycling habits,

students could create a stacked bar chart showing the distribution of recycling material type

(paper, plastic, metal) by school location (cafeteria, gym, classrooms) or time of day.

Students are not expected to use text-based programming or implement an algorithm or model

to generate their visualization or make predictions. Students are also not required to conduct

statistical analyses.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

89© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Data & Analysis

Data Fundamentals

Data Processing

Data Investigation

Impacts of Data Science

HS-DAA-27: Evaluate the results of data simulations and data visualizations to help answer data
questions and to inform decision-making, including identifying limitations.

Boundary
Statement(s)

Students should be able to analyze the results presented in data visualizations and data

simulations to determine their validity and usefulness in answering a question. Students should

be able to identify potential biases, misleading representations, or limitations in the data or

the model that could lead to different conclusions. For example, students could analyze a line

graph showing daily air quality index values and identify whether the y-axis starts at zero or at a

higher value, which could exaggerate changes in air quality. Students should focus on evaluating

existing data products rather than creating them.

Students are not expected to create their own complex data simulations. Students are not

required to rewrite or debug the code that generated the data visualizations or simulations.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

90© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Data & Analysis

Data Fundamentals

Data Processing

Data Investigation

Impacts of Data Science

Impacts of Data Science

EK-DAA-10: Investigate how data can help a person make informed decisions in everyday life.

Boundary
Statement(s)

Students should explore everyday situations involving things they can count, observe, sort,

and touch. Examples include household objects, classroom materials, and weather attributes.

Students should compare quantities (e.g., less than, more than, or equal to) and use patterns to

make simple decisions based on data.

Students are not expected to work with large datasets. Students are not required to use

statistical concepts. Students should not make decisions that are subjective and not based on

data.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Disposition(s) Critical Thinking, Reflectiveness

E1-DAA-11: Examine a variety of data questions that address the needs of a person or community.

Boundary
Statement(s)

Students should examine data questions that are relevant to their lives (e.g., “How many students

bring lunch versus buy lunch?”, “What are the most common ways students get to school?”).

Students should consider how a given data question might be relevant to or impact different

people and communities and how minor changes to wording can affect how we interpret and

answer the question (e.g., “How many first-graders read at home?” vs. “How many first-graders

have books at home?”).

Students are not expected to generate data questions or answer the questions being examined.

Students are not required to collect or analyze data.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

91© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Data & Analysis

Data Fundamentals

Data Processing

Data Investigation

Impacts of Data Science

E2-DAA-11: Distinguish between data collection approaches, including those that may lead to
inaccurate or biased data.

Boundary
Statement(s)

Students should articulate how different ways of gathering data could affect different people
or communities they are familiar with (e.g., classroom, family, school, neighborhood). Students
should identify which communities might be unfairly represented or left out by specific data
collection methods. Students should compare similar approaches to describe how they might
produce different results. Students should connect these differences to real-world situations
where biased data collection could lead to unfair decisions for their community.

Students are not expected to analyze data at this stage. Students are not required to collect data.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Curiosity

E3-DAA-11: Design a data collection process that addresses the needs of people from different
backgrounds or groups.

Boundary
Statement(s)

Students should consider different data collection plans and how they would affect accuracy and
representation. Students’ plans should include what data to gather, what tools to use, and what
sources to access for an investigation. Tools like class surveys or tally charts marking observations
are appropriate. Students should identify different groups and describe how they would be
affected by different data collection strategies. Students can obtain consent by including an opt
out box for the survey a student is designing. Students should learn that they have a right to tell
authority figures (e.g., teachers, website, etc.) they don’t want to share their information.

Students are not required to use advanced data collection techniques or statistics. Students are
not required to consider the ethics associated with data collection or design a process for more
than two or three variables.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 12. Design computational technologies that empower and inform users.

Disposition(s) Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

92© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Data & Analysis

Data Fundamentals

Data Processing

Data Investigation

Impacts of Data Science

E4-DAA-11: Investigate how data collected about people may affect individuals and groups.

Boundary
Statement(s)

Students should investigate simple scenarios to identify who is affected by data collection and

what the effect is, including concerns about privacy and fairness. Students should ask clarifying

questions (e.g., “Who is collecting this information?”, “What information are they collecting?”,

and “Why do they need it?”). Students should identify who is affected, distinguishing between

individuals and groups (e.g., the whole class). Students should describe what the effect is for

the individuals and groups using simple, descriptive terms (e.g., “helpful”, “harmful”, or “unfair”).

Gathering facts and identifying clear effects rather than weighing pros and cons is appropriate.

Students are not expected to conduct formal research projects or make evaluative judgments

about whether the data collection is overall good or bad. Students are not expected to

understand the technical aspects of how data is collected online.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Disposition(s) Critical Thinking, Reflectiveness

E5-DAA-11: Analyze the benefits and risks of computing technology that uses collected data.

Boundary
Statement(s)

Students should examine everyday technologies that rely on collected data (e.g., weather apps,

fitness trackers, or AI tools like voice assistants or recommendation systems) and identify both

benefits (e.g., convenience, personalization, or improved predictions) and risks (e.g., privacy

concerns, inaccurate results, or bias).

Students are not expected to understand technical details of algorithms, machine learning

model training, or data storage infrastructure. Students are not required to evaluate statistical

methods, encryption, or policy frameworks.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

93© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Data & Analysis

Data Fundamentals

Data Processing

Data Investigation

Impacts of Data Science

MS-DAA-28: Explain the benefits and risks of allowing personal data and metadata to be collected
and incorporated into datasets, including data ownership, privacy, and sovereignty.

Boundary
Statement(s)

Students should be able to explain both benefits and risks of allowing personal data and

metadata to be collected by websites, apps, and other computing technologies. Students should

understand that benefits might include personalized recommendations (e.g., suggested videos

or products), improved services based on user feedback data, or free access to platforms in

exchange for data collection. Students should recognize risks including loss of privacy through

location tracking or browsing history collection, unauthorized sale or sharing of personal

data, and loss of control over how their information is used (data ownership). Students should

understand basic concepts of data sovereignty, such as how data collected in one country might

be stored or governed under another country’s laws.

Students are not expected to understand technical implementations of data protection (e.g.,

encryption methods, secure protocols) or to analyze specific legal frameworks (e.g., GDPR,

COPPA). Students are not required to create technical explanations of cybersecurity systems or

to evaluate the technical adequacy of privacy policies.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Disposition(s) Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

94© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Data & Analysis

Data Fundamentals

Data Processing

Data Investigation

Impacts of Data Science

MS-DAA-29: Analyze how decisions made during data collection, data processing, data analysis, and
data presentation can lead to biased data, misleading conclusions, and compromised AI models.

Boundary
Statement(s)

Students should be able to recognize that every stage of working with data involves human

choices, and those choices can affect the results, often unintentionally. For example, if a survey

only includes certain groups of people, the data might be biased even if the researchers did not

intend to exclude anyone. If graphs are created with misleading scales, the conclusions can be

distorted. If an AI model is trained with incomplete or unfair data, its predictions may also be

biased. Students should examine these issues in simple examples and explain the limitations of

the data and how those limitations affect interpretations.

Students are not required to learn advanced statistical methods, the technical details of AI

training algorithms, or programming-level solutions to bias. Students are not required to have

deep knowledge of machine learning mathematics or data science processes.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Inclusive Collaboration: 4. Manage computing projects.

Disposition(s) Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

95© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Data & Analysis

Data Fundamentals

Data Processing

Data Investigation

Impacts of Data Science

HS-DAA-28: Evaluate the societal, environmental, and ethical implications of large-scale data
collection and processing, including AI applications.

Boundary
Statement(s)

Students should be able to analyze and articulate the societal, environmental, and ethical

trade-offs associated with large-scale data collection and processing. This includes evaluating

issues such as individual privacy and consent, data sovereignty, algorithmic bias, the spread of

misinformation, and the environmental impact of data centers. For example, students could

evaluate a social media platform’s data collection policy and discuss the ethical implications of

using that data for targeted advertising.

Students are not expected to perform a formal legal or economic analysis of data policies or

otherwise focus on the technical or legal specifics.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness, Sense of Belonging in CS

HS-DAA-29: Debate the efficacy of policies and regulations to ensure responsible data use.

Boundary
Statement(s)

Students should be able to analyze and evaluate the effectiveness of existing data policies and

regulations. This could look like students researching a specific data privacy issue and preparing

arguments for a classroom debate on whether a new law is needed to protect consumer

data. Students should include the efficacy of social approaches (social movements, political

resistance, personal behavioral change) aimed at shaping the design and use of computing

systems.

Students are not expected to read the text of laws.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

96© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Security

Networks

Impacts of Computing

Systems

Systems & Security

Hardware and Software

EK-SAS-11: Examine the use of tools to accomplish tasks or solve problems for different users.

Boundary
Statement(s)

Students should explore and talk about how everyday tools, both digital and non-digital, help

people complete activities. Students should also recognize that different tools are designed to

solve specific problems for different people. Age-appropriate examples include: using a pencil

or pen to write, using a paintbrush or drawing app to create a picture, using a magnifying glass

to see small things, or using an app on a tablet or physical book to read a story.

Students are not expected to explain technical details about how the tools work or compare

them based on efficiency. Students do not need to develop knowledge of specialized hardware,

software, or design processes.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

97© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Security

Networks

Impacts of Computing

Systems

E1-SAS-12: Describe the purpose of basic hardware components of a computing system, using
accurate terminology.

Boundary
Statement(s)

Students should use correct academic language to both identify the name and explain the basic
function of external computing system hardware (e.g., laptop computer, tablet device, robot,
keyboard, mouse, and other peripherals). Expressing that a laptop or tablet is used to run apps to
complete school work or relating that headphones are used to hear sounds on a device would
be appropriate.

Students are not expected to identify or describe the function of internal computer system
hardware. Students do not need to determine whether peripherals serve as input or output for a
computing system.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 6. Define computational problems.

Disposition(s) Curiosity, Critical Thinking

E2-SAS-12: Explain how the basic hardware components of a computing system, including sensors,
work together to perform input and output (I/O) operations.

Boundary
Statement(s)

Students should use academic language to name components of a computing system, identify
whether they are input or output components, and explain how the components work together
to take in information from the real world and produce an action that can be seen or heard
by people. Explaining input and output operations of components like keyboards, monitors/
screens, microphones, headphones, speakers, webcams/cameras on a robot, printers, light
sensors, sound sensors, and distance sensors is appropriate.

Students are not expected to explain the technical details (e.g., I/O ports and buses, data
digitization) of how inputs and outputs work. Students do not need to explain processing and
storage.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

98© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Security

Networks

Impacts of Computing

Systems

E3-SAS-12: Describe the role of software in a computing system to accomplish tasks or solve
problems.

Boundary
Statement(s)

Students should describe how software applications help with common tasks (e.g., writing a

story, creating an image, playing a game).

Students do not need to learn about operating system structures, cloud storage administration,

or version control systems.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Resourcefulness

E4-SAS-12: Apply basic troubleshooting processes to identify and fix common hardware and software
issues.

Boundary
Statement(s)

Students should focus on following a consistent set of steps (e.g., define, plan, try, reflect) to

address common hardware and software issues such as a device not responding, no network

access, or an app crashing. Students should apply basic troubleshooting strategies such as

restarting the device, checking connections, or closing and reopening applications.

Students are not expected to solve all hardware and software issues they encounter. Students do

not need to open devices to diagnose or troubleshoot internal hardware problems.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Human-Centered Design: 11. Use iterative design processes.

Disposition(s) Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

99© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Security

Networks

Impacts of Computing

Systems

E5-SAS-12: Explain how hardware and software components of a computing system work together to
perform input and output (I/O), processing, and storage.

Boundary
Statement(s)

Students should focus on everyday examples of how hardware and software interact to complete

a task (e.g., pressing a key on a keyboard sends input to the computer, which is stored in memory

and processed with software to display a letter on the screen as output). Age-appropriate models,

such as flow diagrams, role-play activities (students acting as a computer with input, processor,

memory, and output), and creating physical computing projects that use sensors are appropriate.

Students are not expected to design or analyze actual logic gate diagrams, understand machine-

level binary representations, or study complex computer architecture. Students do not need to

develop knowledge of circuitry or number base systems.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 6. Define computational problems.

Disposition(s) Reflectiveness, Critical Thinking

MS-SAS-30: Examine differences between computing systems based on user needs, system
requirements, and potential societal, environmental, and ethical impacts.

Boundary
Statement(s)

Students should compare multiple computing systems based on features and system

requirements (e.g., storage capacity, connectivity, accessibility features). Students should identify

user needs (e.g., portability, cost, battery life) and provide reasoning for system choices. Students

should connect at least one societal, environmental, or ethical impact to system choice (e.g.,

digital divide due to cost, energy consumption and e-waste, privacy and accessibility concerns).

Students are not expected to explain detailed technical specifications (e.g., processor clock

speeds, low-level architecture).

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Resourcefulness, Reflectiveness, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

100© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Security

Networks

Impacts of Computing

Systems

MS-SAS-31: Describe computing devices used in industry, their basic functions, and how they are
used to accomplish tasks and/or solve problems.

Boundary
Statement(s)

Students should learn about various computing devices used in industry and describe their basic
functions. Devices might include robots, electronic control units in vehicles, medical imaging
devices, automated manufacturing equipment, and agricultural sensors. Students should identify
how these devices use input, output, processing, storage, and (when applicable) mechanical
interactions to accomplish specific tasks or solve problems within industries such as medicine,
agriculture, or manufacturing. Students should have agency in selecting industries and devices
to study.

Students are not expected to build or program devices. Students do not need to demonstrate
advanced technical fluency in hardware or software integration.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness, Resourcefulness, Curiosity

HS-SAS-30: Differentiate operating systems as a special type of software that manages both the
hardware and other software components of a computing system, including handling memory and
peripherals.

Boundary
Statement(s)

Students should be able to differentiate an operating system from other types of software by
identifying its role in managing hardware and software resources. For example, students might
compare a computer’s operating system to a video game, explaining that the operating system
manages the computer’s basic functions (like allocating memory and connecting to peripherals)
while the video game is an application that relies on the operating system to run.

Students are not expected to understand the intricacies of how an operating system is coded or
to perform advanced tasks like configuring system drivers.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

101© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Security

Networks

Impacts of Computing

Systems

HS-SAS-31: Apply a physical or simulated computing device to address a real-world task or problem,
demonstrating understanding of its capabilities and limitations.

Boundary
Statement(s)

Students should be able to select and use a computing device, like a smartphone, single-board

computer, or tablet, to solve a practical problem. For example, a student could use a tablet to

manage project deadlines and task assignments for a group project, using its apps and cloud

synchronization features to coordinate with team members, while also identifying limitations

such as battery life or screen size.

Students are not expected to build their own computing device, understand the internal

architecture of the device, or write code that directly controls the device’s hardware

components.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Human-Centered Design: 12. Design computational technologies that empower and inform

users.

Disposition(s) Persistence, Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

102© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Security

Networks

Impacts of Computing

Systems

Security

EK-SAS-12: Differentiate between public and private information

Boundary
Statement(s)

Students should focus on being able to describe the differences between information that can

be safely made public (e.g., favorite food, favorite animal) and information that should be kept

private (e.g., home address, family photos). Real-life scenarios, like deciding what is okay to

share with a friend versus a stranger, are appropriate.

Students are not expected to use technical vocabulary like “confidential”. Students do not need to

understand detailed internet safety rules or the technical aspects of data privacy or cybersecurity.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Sense of Belonging in CS, Critical Thinking

E1-SAS-13: Describe how to keep online accounts safe from unauthorized access.

Boundary
Statement(s)

Students should focus on how authentication (e.g., passwords, QR codes for signing in)

and good habits like signing out/logging off help keep their information protected online.

Demonstrating how they sign out of accounts and keep their authentication details secret from

others would be appropriate, if students have online accounts that require authentication.

Students are not expected to create their own passwords or other authentication methods, or

to describe more complex authentication methods (e.g., multi-factor authentication, passkeys,

biometrics). Students do not need to have online accounts that require authentication; students

can learn and describe these concepts without online accounts.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

103© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Security

Networks

Impacts of Computing

Systems

E2-SAS-13: Explain how online actions have real-world consequences and that laws and rules may
also apply when online.

Boundary
Statement(s)

Students should focus on age-appropriate examples that connect how their online actions
(e.g., sharing information, posting comments, using a device) can have effects in the real world
(e.g., hurting someone’s feelings, compromising personal safety). Writing a story or drawing a
picture to show how a specific online behavior (e.g., sharing a picture without asking) can lead
to a consequence (e.g., making a friend angry) is appropriate. Discussing the consequences of
copying someone’s work online is also appropriate.

Students are not expected to identify specific laws (e.g., CIPA, COPPA) or legal frameworks like
copyright or intellectual property law. Students do not need to have online accounts; students
can learn and describe these concepts without online accounts.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational
technologies.

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Sense of Belonging in CS, Reflectiveness

E3-SAS-13: Distinguish between authentication and authorization in protecting devices and private
information.

Boundary
Statement(s)

Students should focus on authentication and authorization as two distinct but related concepts
for protecting private information and devices. Using an analogy of a house is appropriate:
authentication is proving you have the key to get in the door, while authorization is a parent
telling you which rooms in the house you’re allowed to enter once you’re inside.

Students are not expected to learn about different types of authentication (e.g., biometrics,
multi-factor authentication) or technical details of how authentication or authorization work.
Students do not need to use a variety of authentication methods.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

104© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Security

Networks

Impacts of Computing

Systems

E4-SAS-13: Evaluate how sharing information online might reveal personally identifiable information
(PII) and other details to people other than the intended recipients.

Boundary
Statement(s)

Students should focus on developing skills to help them recognize risks in online situations

and assess what and when to share information online. Activities using age-appropriate real-

world situations (e.g., sharing their favorite book with a classmate, providing their address in

response to a pop-up on a website saying they won a prize) are appropriate. Students should

practice identifying how seemingly harmless information shared in contexts like online gaming

(e.g., screen names, team names, game schedules) can unintentionally reveal PII to unintended

recipients.

Students are not expected to evaluate all risky online situations, including things like catfishing

and data breaches. Students do not need to participate in situations where they could reveal

their personally identifiable information.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

105© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Security

Networks

Impacts of Computing

Systems

E5-SAS-13: Describe the concepts of the CIA (Confidentiality, Integrity, Access) Triad and how each
part is important in protecting information.

Boundary
Statement(s)

Students should be able to explain the CIA Triad at a conceptual level and describe how each

element (Confidentiality, Integrity, and Availability) helps protect information. For example,

students might describe confidentiality as keeping a password secret and not sharing personally

identifiable information online. They might describe integrity as ensuring that data is accurate

and unchanged (e.g., checking whether a photo is real or AI-generated, or ensuring that grades

in a gradebook haven’t been improperly changed). They might describe availability as ensuring

they can access their accounts, devices, apps, or gaming systems when they need them (e.g., the

system isn’t down or blocked).

Students are not expected to implement technical security measures such as encryption or

access control lists. Students do not need to understand cybersecurity systems or networks

beyond how they affect students’ daily lives.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Human-Centered Design: 12. Design computational technologies that empower and inform

users.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

106© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Security

Networks

Impacts of Computing

Systems

MS-SAS-32: Explain the effects of failing to use the CIA (Confidentiality, Integrity, Access) Triad.

Boundary
Statement(s)

Students should recognize and explain what happens when each element of the CIA Triad is
not maintained. When confidentiality is compromised, sensitive data is exposed (e.g., leaked
passwords, shared personal information). When integrity is compromised, data becomes corrupted
or altered (e.g., incorrect grades in a school database). When availability is compromised, systems
become inaccessible (e.g., a denial-of-service attack blocking a website). Students should apply
the CIA Triad to age-appropriate, relatable contexts (e.g., school accounts, social media, or online
gaming, demonstrating understanding of how failures connect to real-world impacts).

Students are not expected to conduct professional-level security audits or design encryption
protocols. Students do not need to develop deep cryptography knowledge.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Disposition(s) Critical Thinking, Reflectiveness

MS-SAS-33: Evaluate common types of cyber attacks, including social engineering and malware, and
preventions.

Boundary
Statement(s)

Students should identify and describe common types of cyber attacks such as phishing,
malware, ransomware, and social engineering. They should be able to evaluate how these
attacks exploit human behavior and system vulnerabilities. Students could also explore real-
world examples of cyber incidents and their consequences. Students should learn to apply basic
prevention strategies, such as using strong passwords, enabling multi-factor authentication, and
recognizing suspicious activity.

Students are not expected to perform penetration testing or advanced threat modeling. Students
do not need to write code, analyze malicious code, or implement enterprise-level security
systems or protocols.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Resourcefulness, Reflectiveness, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

107© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Security

Networks

Impacts of Computing

Systems

HS-SAS-32: Identify different types of cybersecurity and physical security measures and the trade-offs
for users, data, and devices.

Boundary
Statement(s)

Students should be able to identify and describe different types of cybersecurity and physical

security measures, as well as their associated trade-offs. They should be able to articulate how

a security measure may benefit one aspect (e.g., data protection) while posing a challenge to

another (e.g., user convenience or cost). For example, students could identify how multi-factor

authentication (MFA) enhances security for a user’s account but may be less convenient for the

user to access. Students should focus on conceptual understanding of security principles and

their practical implementation.

Students are not expected to implement these security measures or demonstrate technical

expertise.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

108© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Security

Networks

Impacts of Computing

Systems

HS-SAS-33: Classify the causes and impacts of security breaches and social engineering attacks for
individuals, industries, communities, and governments.

Boundary
Statement(s)

Students should be able to research and categorize the consequences of a security breach

or social engineering attack, differentiating between the effects on various stakeholders. The

classification should go beyond a simple list of impacts and demonstrate an understanding of

how the same breach can have different types of consequences (e.g., financial, reputational,

legal, operational) for different groups. For example, a student could classify the impacts of a

data breach at a hospital, analyzing the effects on patients (individuals), the hospital (industry),

the local healthcare system (community), and regulations (government). Students should focus

on understanding the broad, interconnected impacts of an attack.

Students are not expected to conduct a forensic investigation of a real-world breach or to

use professional cybersecurity tools for their analysis. Students do not need to focus on the

technical details of the attack itself.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

109© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Security

Networks

Impacts of Computing

Systems

HS-SAS-34: Formulate a solution to a security flaw in a given system.

Boundary
Statement(s)

Students should be able to analyze a simulated or described scenario involving a security

flaw and propose a high-level solution. The proposed solution should explain the identified

vulnerability, the potential consequences, and the recommended steps for mitigation. For

example, a student could be given a case study of a school’s network being compromised by

a phishing attack and be asked to propose a solution that includes both technical measures

(e.g., email filtering that detects suspicious links, multi-factor authentication) and non-technical

measures (e.g., user training, security policies) to prevent future attacks.

Students are not expected to implement the solution.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

110© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Security

Networks

Impacts of Computing

Systems

Networks

Standards do not begin until Grade 3.

E3-SAS-14: Explain how people access the Internet to gain information and communicate with each
other.

Boundary
Statement(s)

Students should be able to describe, in age-appropriate terms, how people use different devices

to connect to the Internet and communicate. Examples of devices that can be used to access

the Internet include computers, cell phones, and tablets. Examples of accessing information

include using a search engine to look up facts for a report. Examples of communicating through

technology include using video chat to talk with people across long distances.

Students are not expected to describe technical infrastructure such as IP addressing, routing

protocols, domain name systems, or data packet transmission. Students do not need to consider

network configuration or errors.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

111© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Security

Networks

Impacts of Computing

Systems

E4-SAS-14: Critique the ways computing devices connect to the Internet, wired or wireless.

Boundary
Statement(s)

Students should focus on comparing the advantages and disadvantages of different ways of

connecting to the Internet. Important factors include distance, speed, convenience, and safety

considerations (e.g., connecting to trusted networks at home or school versus unknown public

networks). Tasks where students determine when it is advantageous to have either a wired

connection or wireless connection are appropriate.

Students are not expected to explore other ways of connecting between devices to share

information (e.g., Bluetooth) or the protocols used to connect devices (e.g., TCP/IP). Students do

not need direct access to routers or hubs.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Critical Thinking, Reflectiveness

E5-SAS-14: Investigate the components of wired and wireless networks.

Boundary
Statement(s)

Students should explore and describe the basic components of networks, such as devices

(computers, tablets, phones), connecting hardware (routers, switches, cables), and wireless

connections (Wi-Fi signals).

Students are not expected to understand detailed networking protocols, IP addressing, or

the technical differences between LANs, WANs, and the Internet. Students do not need to

understand packet structures, routing tables, or advanced network design.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Reflectiveness, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

112© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Networks

Security

Impacts of Computing
Systems

MS-SAS-34: Model how information in a network is broken down into packets, transmitted between
devices, and reassembled.

Boundary
Statement(s)

Students should be able to model how data is split into packets, encoded into binary,

transmitted independently across a network, and reassembled at the destination. Students

should also identify common issues such as packet loss, explain possible causes (e.g.,

congestion, interference, or faulty hardware), and describe basic strategies to reduce or prevent

packet loss.

Students are not expected to explore networking protocols in detail (e.g., TCP/IP) or to configure

real-world networking hardware (routers, switches, servers).

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking, Curiosity

MS-SAS-35: Explain how the resilience of the Internet depends on the interconnected devices,
including their roles and functions within the network.

Boundary
Statement(s)

Students should be able to explain how the Internet is made up of interconnected devices that

each serve specific roles. For example, routers direct traffic between networks, servers host

information, clients (e.g., laptops or phones) request and use data, and switches connect devices

within a local network. Students should also describe how redundancy (multiple pathways

between devices) supports resilience, allowing communication to continue even if some devices

or connections fail.

Students are not expected to demonstrate technical knowledge of networking protocols (e.g.,

TCP/IP) or to configure or analyze real-world enterprise-level networking systems.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 6. Define computational problems.

Disposition(s) Reflectiveness, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

113© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Networks

Security

Impacts of Computing
Systems

HS-SAS-35: Diagram a network of computing systems, including hardware and software.

Boundary
Statement(s)

Students should be able to create a diagram of a computing systems network that includes

both hardware (e.g., servers, routers, storage, and user devices) and software (e.g., operating

systems and applications). Students should focus on recognizing and representing the concept

of a network and the role of each component in the network. Students should show how these

components connect and interact to process information, accomplish tasks, or solve problems.

Students are not expected to build a network using hardware or software.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Creativity, Critical Thinking

HS-SAS-36: Analyze how the Internet functions as a network of networks, including similarities and
differences between the Internet and other types of networks in terms of structure, protocols, and
scalability.

Boundary
Statement(s)

Students should be able to conceptually analyze the Internet’s layered structure and its role as

a global network connecting smaller, local networks. This includes identifying key components

such as routers, protocols like TCP/IP, and the client/server model. For example, a student could

compare a simple local area network (LAN) in a classroom to the global structure of the Internet,

explaining how the principles of each differ in terms of scale, addressing, and data transfer.

Students should focus on developing a high-level, conceptual understanding of networking

principles.

Students are not expected to implement specific networks, configure or troubleshoot

professional-grade networking equipment, write network protocols, or perform packet analysis.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

114© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Networks

Security

Impacts of Computing
Systems

Impacts of Computing Systems

EK-SAS-13: Identify an individual’s role in responsibly using computing systems and tools.

Boundary
Statement(s)

Students should be able to identify the responsible use of hardware and software in terms of

tangible, classroom-level expectations including caring for hardware (e.g., handling devices gently,

keeping food and drink away from devices), making safe choices (e.g., asking permission before

using a device, only using the app specified), and being a good citizen in a shared technology

environment (e.g., not using someone else’s account, using headphones instead of playing sound

out loud). Students should focus on understanding that computing systems are used as tools for

learning and should be used appropriately in the same way other tools are used in the classroom.

Students are not expected to understand complex cybersecurity or digital citizenship topics.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Reflectiveness

E1-SAS-14: Describe an individual’s role in responsibly using computing systems and tools.

Boundary
Statement(s)

Students should focus on responsible use in terms of tangible, classroom-level expectations

including caring for hardware (e.g., handling devices gently, keeping food and drink away from

devices), making safe choices (e.g., asking permission before using a device), and being a good

citizen in a shared technology environment (e.g., not using someone else’s account, using

headphones instead of playing sound out loud).

Students are not expected to describe complex digital citizenship topics. Students do not need

to understand intellectual property (e.g., copyright), plagiarism, how to identify misinformation,

or the nuances of a digital footprint.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

115© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Networks

Security

Impacts of Computing
Systems

E2-SAS-14: Describe the benefits and harms that arise from an individual’s use of computing technology.

Boundary
Statement(s)

Students should describe benefits and harms in the context of their own personal experiences,
feelings, and well-being. The concepts should be simple and concrete. Describing benefits
such as learning new things (e.g., watching a video about animals), having fun (e.g., playing a
creative game), and connecting with family and friends (e.g., video calling a relative) would be
appropriate. Describing harms such as physical effects of too much screen time (e.g., tired eyes,
feeling grumpy), feeling sad or left out by something they see, or accidentally seeing something
confusing or scary would also be appropriate.

Students are not expected to describe complex or large-scale societal harms. Students do not
need to understand issues like the digital divide, the spread of misinformation, or data privacy.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Critical Thinking, Reflectiveness

E3-SAS-15: Describe how widely used computing technologies may impact an individual’s life and
community.

Boundary
Statement(s)

Students should be able to describe both benefits and harms (e.g., effects on safety, privacy,
economy, and culture) of computing technology in wide use. They should be able to reason about
specific scenarios and identify which individuals or communities (e.g., themselves, their parents,
children, elderly people, teachers) are impacted by a particular benefit or harm and describe the
nature of the impacts.

Students are not expected to describe the benefits and harms of computing technologies or
the impacts on communities without first learning about these technologies and communities.
Students do not need to memorize a list of technologies and their impacts on specific communities.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational
technologies.

Human-Centered Design: 12. Design computational technologies that empower and inform users.

Disposition(s) Reflectiveness, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

116© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Networks

Security

Impacts of Computing
Systems

E4-SAS-15: Investigate the impacts for widely used computing technologies on natural resources and
the environment.

Boundary
Statement(s)

Students should investigate the environmental effects of widely used technology (e.g., artificial

intelligence, computers, tablets, monitors). They should designate the effects of computing

technology as harmful or beneficial to the Earth’s environment and its natural resources.

Students can consider large sources of impact (e.g., e-waste, burning fossil fuels for power,

mining of materials, modeling of solutions using technology, conserving energy with “smart”

systems) and more individual sources of impact (e.g., water and energy usage, frequent device

upgrades, recycling/reuse of computing systems and components, information availability about

the environment, reducing paper usage).

Students are not expected to investigate the impacts of technology that is not in wide use (e.g.,

quantum computing). Students do not need specialized equipment or knowledge of science

concepts beyond what is grade-level appropriate.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

117© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Networks

Security

Impacts of Computing
Systems

E5-SAS-15: Examine how computing technologies impact culture and the ways people live and work.

Boundary
Statement(s)

Students should examine the cultural impact of existing and emerging computing technologies

that both help and hinder societal needs. Examples of appropriate topics include the different

roles social media plays in our culture and society and how generative AI is changing the way

people work.

Students are not expected to identify or reference specific ethical frameworks (e.g.,

utilitarianism) or sociological concepts (e.g., functionalism). Students do not need to access or

use the technologies being discussed (e.g., social media, generative AI).

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Reflectiveness

MS-SAS-36: Collaboratively improve the design of a computing system so it can be better used by
people with different needs, abilities, and ways of thinking.

Boundary
Statement(s)

Students should recognize that computing systems need to be designed with accessibility

and inclusivity in mind. Examples include providing options for closed captions, adjusting font

sizes or colors for readability, providing alternative input devices (like voice control or adaptive

keyboards), or features that support neurodiverse user needs. Students should collaborate in

teams to propose and refine designs that make a system more inclusive. Students may conduct

simple peer testing to evaluate design improvements.

Students are not expected to design hardware from scratch or write complex code for

accessibility features. Students do not need to perform professional-level usability testing.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Human-Centered Design: 12. Design computational technologies that empower and inform

users.

Disposition(s) Creativity, Sense of Belonging in CS

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

118© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Networks

Security

Impacts of Computing
Systems

MS-SAS-37: Examine differences in access to computing systems, based on personal and social
factors, including physical ability, geographic location, socioeconomic status, and age.

Boundary
Statement(s)

Students should investigate how access to computing systems varies across groups and regions,

considering factors like income, physical accessibility, community resources, and infrastructure.

For example, students may compare access to broadband Internet in urban vs. rural areas,

or explore how adaptive technologies support people with disabilities. Students should

analyze examples of digital divides at personal (home access), school (device availability), and

community (libraries, Wi-Fi hotspots) levels. Students may discuss the role of government or

nonprofits in expanding access.

Students are not expected to perform statistical analyses of large national datasets, but they may

use pre-curated datasets, maps, or local surveys. Students do not need to perform advanced

policy evaluation.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

119© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Systems & Security

Hardware and Software

Networks

Security

Impacts of Computing
Systems

HS-SAS-37: Evaluate the rationales behind laws and policies governing the design and use of
computing systems.

Boundary
Statement(s)

Students should be able to analyze and articulate the reasoning (technical, legal, and social)

behind various policies related to the design and use of computing systems. Students should

consider the rationale for technical approaches (e.g., responsible design practices, policies

requiring two-factor authentication for sensitive data), legal approaches (e.g., laws like

the Children’s Online Privacy Protection Act (COPPA)) and social approaches (e.g., social

movements, political resistance, personal behavioral change) to shaping the design and use

of computing systems. Students should focus on understanding why these policies exist, what

problems they aim to solve, and their intended and unintended consequences.

Students do not need to read and interpret the text of laws or other legal texts.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Reflectiveness

HS-SAS-38: Investigate how computing systems and infrastructure impact society and the
environment, identifying who is affected and why.

Boundary
Statement(s)

Students should be able to research, analyze, and articulate the societal and environmental

impacts of computing, including the physical components and their lifecycle. This includes, but

is not limited to, the energy consumption of data centers, the ethics of computing waste storage

and disposal, and the social effects of mobile devices. For example, a student could investigate

the supply chain of a mobile device including its human and environmental costs.

Students are not expected to propose novel technical solutions to these large-scale problems,

but rather to analyze and communicate the problems themselves.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

120© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

Computing & Society

History of Computing

EK-CAS-14: Identify computing technologies used in daily life that have changed over time.

Boundary
Statement(s)

Students should recognize and recall basic visual differences of computing technologies used
in school or by their own family members that have changed from older versions. Examples
are identifying that the current family phone is smaller and flatter than an older phone a parent
or grandparent used, or that the family watches movies on a tablet now instead of using a TV
would be appropriate.

Students are not expected to understand the internal technological advancements (e.g.,
faster processors, memory capacity) that caused the changes. Students are not required to
know specific historical dates, names of inventors, or the technical functions of the different
generations of devices.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Reflectiveness, Curiosity

E1-CAS-15: Compare how one familiar daily activity was done before and after the introduction of a
specific computing technology.

Boundary
Statement(s)

Students should compare observable differences in how people completed a familiar task before
and after a computing technology was introduced. Concrete, everyday examples, such as how
people communicate (writing letters vs. sending text messages) or find information (using library
books vs. searching online) are appropriate.

Students are not expected to understand the technical details of how technologies work or their
historical timelines. Students are not required to analyze societal shifts or economic impacts.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Reflectiveness, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

121© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

E2-CAS-15: Analyze the ways that people from different cultures, backgrounds, and time periods have
designed computing technologies to help them solve problems and express themselves.

Boundary
Statement(s)

Students should explore how computing technologies have emerged from people’s efforts to

meet specific needs and express ideas within their cultural and historical contexts. An analysis

focused on how computing technologies have supported individuals with different abilities

throughout history or changed the modes and frequency of communication is appropriate.

Students are not expected to conduct detailed history on the evolution of computing as a

whole. Students are not required to compare complex cultural or societal impacts of technology

across time periods.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Sense of Belonging in CS, Reflectiveness

E3-CAS-16: Examine how computing innovations have changed the ways people live, work, or
communicate over time.

Boundary
Statement(s)

Students should explore and explain how computing innovations across different time

periods have progressively changed daily life, work, or communication, focusing on concrete,

observable changes in human behavior. Examining how finding information, communicating

verbally and in writing, enjoying entertainment, shopping, doing tasks at school and work have

evolved over time due to computing innovations are appropriate.

Students are not expected to understand the technical details of how computing innovations

work or to create timelines of all computing innovations. Students are not required to examine

complex societal impacts of computing innovations.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

122© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

E4-CAS-16: Investigate the contributions of diverse and often overlooked individuals and
communities in the history of computing.

Boundary
Statement(s)

Students should explore stories and achievements of individuals and communities whose

contributions to computing are often underrepresented in mainstream accounts. Students

should focus on understanding the concept of diversity or lack thereof in computing history.

Researching and explaining the contributions of women, people of color, and innovators from

global communities is appropriate.

Students are not expected to explore the factors that led to historical underrepresentation or

exclusion in computing. Students are not required to memorize a comprehensive list of every

historical figure.

Pillar(s) and
Practice(s)

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Sense of Belonging in CS, Curiosity

E5-CAS-16: Analyze how the inclusion or exclusion of diverse and often overlooked individuals and
communities has shaped the design, development, and societal impact of computing technologies.

Boundary
Statement(s)

Students should analyze historical and contemporary examples of computing innovations,

identifying how inclusion or exclusion of certain groups influenced technological progress and

access. Analyzing the development of early programming languages or accessibility tools would

be appropriate.

Students are not expected to conduct independent historical research or examine complex

sociopolitical movements in depth. Students are not required to know specific dates, laws, or

named individuals beyond those directly connected to major computing milestones.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

123© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

MS-CAS-38: Compare the roles of individuals, communities, organizations, and governments in
shaping computing technologies across major eras in computing history.

Boundary
Statement(s)

Students should identify and describe examples of historical and contemporary individuals,
communities, organizations, and governments that have influenced the development of computing
technologies. Students explain the motivations of these individuals and groups in advancing
computing. Students also recognize how these different actors have interacted with one another.
Students should be able to recognize both positive and negative impacts of technological decisions.

Students are not expected to memorize timelines, technologies, or related facts. They are not
expected to conduct deep ethical or social analyses. Students are also not expected to evaluate or
rank individuals or groups by their relative importance.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Curiosity

MS-CAS-39: Analyze intended and unintended impacts of historical computing technologies on
society and the environment.

Boundary
Statement(s)

Students should distinguish between the intended purpose of a computing technology and its
unintended consequences. Students identify and describe clear societal and environmental
impacts, such as changes in communication, employment, privacy, e-waste, and energy
consumption. They make simple cause-and-effect connections between computing technologies
and their outcomes. For instance, recognizing that increased use of artificial intelligence can raise
energy demands and contribute to higher power costs for consumers

Students are not expected to conduct cost-benefit analyses or perform complex calculations to
determine environmental impacts. They are also not expected to make detailed predictions about
future technologies or develop solutions to the unintended effects they identify.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

124© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

HS-CAS-39: Analyze the historical trajectory of specific computing technologies and how their
development is linked to social, political, environmental, and economic factors.

Boundary
Statement(s)

Students should be able to investigate a computing technology (e.g., the internet, a social media

platform, or a specific type of integrated sensor technology) from its inception to its current

state, identifying key moments where non-technical forces directly influenced its design,

adoption, or ethical challenges. They should use reliable secondary sources to draw and support

their analytical conclusions. For example, high school students could research the rise of

mobile computing, analyzing how shifts in economic factors (e.g., globalization of supply chains

lowering hardware cost) and social trends (e.g., demand for instant communication) drove its

rapid adoption and evolution.

Students are not expected to conduct or synthesize research on the primary source documents

of these technologies, nor are they required to master economic models or complex legal

frameworks related to technology regulation.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

125© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

HS-CAS-40: Propose modifications to existing policies and legislation that encourage ethical
innovation and minimize societal risks associated with technology.

Boundary
Statement(s)

Students should be able to articulate the rationale behind policies and legislation that guide

technological development. This includes explaining how specific laws, like data privacy

regulations or rules about algorithmic transparency, are designed to address societal concerns

such as discrimination, a loss of privacy, or job displacement. Students should focus on

understanding the why behind technology policy rather than the how of lawmaking. For

example, a student could justify the need for legislation like the European Union’s General Data

Protection Regulation (GDPR) by explaining how it gives individuals more control over their

personal data, thereby minimizing the risk of privacy breaches and misuse.

Students are not expected to draft legal documents, interpret complex legal jargon, or have a

deep understanding of the legislative process itself.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

126© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

Emerging Technologies

Standards do not begin until Grade 3.

E3-CAS-17: Describe how new technologies create both benefits and risks in personal and family life.

Boundary
Statement(s)

Students should describe how new technologies (both that they interact with on a daily basis

and those they may have learned about in other ways) may not have an exclusively positive or

negative impact on their personal or family life. They should consider examples of both benefits

and risks. Examples such as video calls with relatives, online learning, generative AI, or using

smart devices at home are appropriate.

Students are not expected to describe complex social or economic impacts nor complex new

technologies (e.g., quantum computing).

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Reflectiveness

E4-CAS-17: Analyze how the limitations of existing technologies can lead to emerging technologies.

Boundary
Statement(s)

Students should be able to identify a limitation in an older or existing technology (e.g.,

a weakness, something that doesn’t work well, or a problem) and logically explain how

overcoming that limitation could motivate the creation of a new, emerging technology, focusing

on cause-and-effect reasoning in innovation. Analyzing both past (e.g., Mainframe computers

to laptops, older mobile phones to smartphones) and more current emerging technologies (e.g.,

auto complete to generative AI, older model cars to self-driving cars) is appropriate.

Students are not expected to research the actual motivations for the creation of technologies.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Reflectiveness, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

127© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

E5-CAS-17: Examine how people decide whether or not to use emerging technologies.

Boundary
Statement(s)

Students should analyze the factors people consider when making personal decisions about

using, avoiding, or rejecting emerging technologies, including personal needs and values,

benefits, concerns, and accessibility. For example, students might examine why a person would

choose to use or reject a smartwatch or voice assistant at home by considering convenience,

cost, privacy concerns, and accessibility for family members with varying abilities.

Students are not expected to do research studies or understand the technical aspects of how

the emerging technologies examined work. Students are not required to make value judgments

about whether people’s decisions are “right” or “wrong.”

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Reflectiveness, Curiosity

MS-CAS-40: Evaluate when it is appropriate to use AI and other emerging technologies to solve a
problem based on their capabilities, limitations, and environmental impacts.

Boundary
Statement(s)

Students should be able to identify what emerging technologies (e.g., AI, robotics, virtual reality,

quantum computing) can and cannot currently do, and determine whether they are appropriate

for addressing a specific problem. They should consider factors such as technical capabilities,

reliability, infrastructure requirements, environmental impacts, and the maturity or readiness of

the technology. For example, students might evaluate whether robotics is suitable for automating

a farm task or whether quantum computing is realistic for improving classroom security systems.

Students are not expected to understand the underlying mechanics of these technologies,

predict future breakthroughs, or design functioning prototypes. They are also not expected to

engage in ethical debates about regulation or human rights implications.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Reflectiveness, Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

128© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

MS-CAS-41: Evaluate how design decisions in emerging technologies influence user experiences
differently across different communities.

Boundary
Statement(s)

Students should be able to evaluate how design decisions in new and emerging technologies

affect people’s experiences across different communities. They explore how choices in areas like

accessibility, language, cost, or connectivity shape who can use and benefit from a technology.

Students examine examples of technologies that may unintentionally exclude certain users

and suggest ways to make them more inclusive. Teachers might observe students comparing

real products or platforms and discussing which design choices create barriers or open access.

These conversations help students see how thoughtful, human-centered design can make

computing more equitable and responsive to the needs of all people.

Students are not expected to conduct full usability studies or design professional prototypes.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational

technologies.

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Reflectiveness, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

129© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

MS-CAS-42: Debate ways an emerging technology impacts the social, cultural, and ecological issues
in their communities.

Boundary
Statement(s)

Students should be able to provide a list of issues at the community level that have benefited
or could benefit from an emerging technology. Focusing on a specific emerging technology,
students should be able to construct arguments with references for a debate on positive and
negative impacts of that technology. Students could either debate which applications of an
emerging technology have the greatest or least impact, or argue either for or against a particular
application. Students should attend to who is impacted and how they are impacted as well as
costs and harms to the community and environment.

Students are not expected to understand all the technical details of emerging technologies.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Creativity, Persistence, Resourcefulness, Critical Thinking

HS-CAS-41: Hypothesize how AI or another emerging technology could lead to enhancements or
alternative approaches for an existing computing system or device.

Boundary
Statement(s)

Students should be able to propose a plausible idea for how a new or developing technology
could be integrated into an existing computing system or device to improve its performance or
offer a new way of accomplishing a task. This requires a basic understanding of the emerging
technology’s function and the existing system’s purpose. For example, a student could
hypothesize that a virtual reality (VR) system could replace a traditional web browser by creating
an immersive, three-dimensional space for searching and interacting with information, which
would be an alternative approach to a two-dimensional screen.

Students are not expected to have the technical knowledge to build or program the new system,
nor are they required to understand the complex science behind the emerging technology.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Creativity, Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

130© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

HS-CAS-42: Evaluate the societal and environmental impacts of emerging technologies, including
those that lead to inequities in access and outcomes.

Boundary
Statement(s)

Students should be able to critically analyze an emerging technology by identifying and

assessing its potential positive and negative effects on society and the environment. This

includes considering how the technology might create or worsen social inequities in access and

outcomes. Students should focus on developing a well-reasoned, conceptual argument about

an emerging technology’s broader impacts. For example, a student could evaluate the use of

generative AI in education. They would identify the potential positive impacts, like providing

personalized tutoring, but also the negative ones, such as the potential for academic dishonesty

and the risk of widening the digital divide for students without access to these tools.

Students are not expected to conduct a formal, data-driven sociological or environmental study.

Pillar(s) and
Practice(s)

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Human-Centered Design: 12. Design computational technologies that empower and inform

users.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

131© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

HS-CAS-43: Design a conceptual or prototype solution to a real-world problem using an emerging
technology, supported by credible research and an ethical analysis of its potential benefits and harms
to people and the environment.

Boundary
Statement(s)

Students should be able to design a conceptual or tangible solution to a real-world problem by

applying an emerging technology. This process must be supported by credible research on both

the problem and the technology’s capabilities. The solution should also be mindful of ethical

implications, with students analyzing the potential benefits and harms to different groups of

people and the environment. For example, a student could create a design document for a

system that uses AI to analyze satellite imagery to help track deforestation, addressing a real-

world environmental problem. Their work would include research to support their claim and a

discussion of the ethical considerations, such as the potential for misuse of the data.

Students are not expected to build a fully functional, production-ready version of their solution.

Students are not expected to engage in complex engineering.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 6. Define computational problems.

Disposition(s) Creativity, Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

132© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

Humans and Computing

EK-CAS-15: Describe that people design and develop computing technologies.

Boundary
Statement(s)

Students should recognize that people make technology and understand that they can

be creators too. Examples of diverse creators (e.g., people of different ages, genders, and

backgrounds) who make simple tools or technologies are appropriate.

Students are not expected to understand the technical details of how technologies are built.

Students are not required to build their own functioning electronic computing technologies.

Pillar(s) and
Practice(s)

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Sense of Belonging in CS

E1-CAS-16: Differentiate between activities that humans do well and activities that computing
technologies do well.

Boundary
Statement(s)

Students should categorize and explain simple, observable differences in what humans and

computing technologies do best for various tasks. Examples of human strengths such as

creativity, understanding feelings, and solving new problems are appropriate. Examples of

computing technology strengths such as repeating tasks without mistakes, calculating quickly,

and remembering lots of information are appropriate.

Students are not expected to understand the cognitive science behind human intelligence

or the technical details of how computing technologies perform certain tasks. Students are

not required to analyze ethical or societal consequences that arise from humans or machines

performing specific tasks.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

133© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

E2-CAS-16: Investigate situations where humans have created computing technologies to solve
problems.

Boundary
Statement(s)

Students should investigate familiar, concrete examples of how people have designed computing
technologies to address everyday problems they can relate to. Technologies with clear,
observable purposes are appropriate, such as traffic lights that help cars and pedestrians move
safely, barcode scanners that help stores track inventory, automatic doors that help people enter
buildings, weather apps that help families plan activities, or classroom timers that help manage
transitions. Students might investigate how these technologies were created to solve specific
problems like “cars were crashing at intersections” or “it was hard to keep track of library books.”

Students are not expected to understand how computing technologies work internally or to
explain programming, engineering, or data processes. Students are not required to analyze
historical development, compare technologies, or address advanced issues such as data privacy,
cybersecurity, artificial intelligence, or automation.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Sense of Belonging in CS, Critical Thinking

E3-CAS-18: Examine why people design and build computing technologies, including AI.

Boundary
Statement(s)

Students should explore the basic reasons computing technologies were created and
communicate the needs or problems these technologies were likely intended to address,
focusing on the human intent or goal. Examining how computing technologies are designed to
meet needs, solve specific problems, make tasks easier, or provide entertainment is appropriate.

Students are not expected to understand the technical details of how computing technologies
work. Students are not required to compare multiple technologies to determine which best
meets a particular need.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

134© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

E4-CAS-18: Distinguish between the ways humans learn and the ways computing technologies learn.

Boundary
Statement(s)

Students should compare and contrast basic characteristics of human learning and machine

learning using simple, observable examples. For instance, humans learn by making sense of

experiences and drawing on prior knowledge, while computing technologies learn by detecting

patterns or correlations in data.

Students are not expected to understand mathematical modeling, neural networks, or

algorithmic training processes in technical detail nor are they expected to understand human

cognition in detail. Students are not required to use or code actual AI models or apply formal

data training procedures.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking

E5-CAS-18: Evaluate when it is appropriate to use or not use computing technologies to solve a problem.

Boundary
Statement(s)

Students should evaluate and justify whether computing technologies are the best tools

for solving a specific problem by considering the context, potential benefits, and potential

drawbacks. These potential benefits and drawbacks can include technical, ethical, or

environmental considerations. Students should focus on analyzing the feasibility of whether or

not the solution requires computing. Deciding that AI is helpful for quickly translating a simple

sentence but is not appropriate or helpful for deciding who should receive the last slice of pizza,

which requires human judgment and social skills, is appropriate.

Students are not expected to understand ethical frameworks, legal implications, or technical

performance metrics (e.g., error rates, training data bias) used by professional engineers to make

these decisions. Students are not required to solve the problem.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

135© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

MS-CAS-43: Analyze how the decisions humans make when using computing technologies influence
ethical and social outcomes.

Boundary
Statement(s)

Students should analyze how human choices in the design and use of computing technologies

influence fairness, equity, privacy, and social well-being. They should investigate how decisions

such as what data to collect, which algorithms to use, or how results are interpreted can lead

to different outcomes for individuals and communities. Examples might include analyzing how

recommendations on social media affect what people see online, how automated grading or

hiring systems might reinforce bias, or how accessibility features can expand inclusion. Students

should explain how intentional human decisions, rather than the technologies alone, shape

these ethical and social impacts and propose ways to use computing more responsibly.

Students are not expected to design or program full computing systems, perform advanced

algorithmic audits, or resolve complex ethical dilemmas. Students are not required to take

positions on philosophical questions about artificial intelligence, consciousness, or rights.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

136© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

HS-CAS-44: Evaluate how human choices in using, designing, deploying, and regulating computing
technologies influence their risks, benefits, and long-term impacts.

Boundary
Statement(s)

Students should evaluate the ethical and societal implications of computing technologies
by examining how choices made by developers, users, and regulators shape their outcomes.
Students should be able to analyze a case study, such as the use of an algorithmic system in
a loan approval process, to identify the human choices (e.g., data selection, model tuning,
deployment criteria) that could introduce bias and discuss the resulting risks (e.g., discriminatory
outcomes) and benefits (e.g., increased efficiency).

Students are not expected to train a complex machine learning model from scratch or perform a
deep mathematical analysis of different AI algorithms (e.g., backpropagation in neural networks).
Students should not focus on the underlying code or mathematics.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Critical Thinking, Reflectiveness

HS-CAS-45: Debate perspectives on the necessary differences between human and artificial intelligence,
including implications for sentience, consciousness, ethics, rights, and societal responsibilities.

Boundary
Statement(s)

Students should debate the philosophical and ethical boundaries between human intelligence (HI)
and artificial intelligence (AI), focusing on core concepts like Artificial General Intelligence (AGI)
and the resulting implications for an AI’s ethical status or rights. Students should be able to analyze
and articulate arguments for and against the possibility of creating an AGI and discuss what societal
responsibilities (e.g., accountability, legal personhood) might arise if such an event occurred.

Students are not expected to deeply analyze the neurological or biological mechanisms of human
consciousness or the mathematical frameworks of complex AI models (e.g., specific neural
network architectures).

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

137© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

Career Exploration

EK-CAS-16: Identify how people use digital devices in their homes, schools, and work.

Boundary
Statement(s)

Students should recognize, label, and state ways people use digital devices for daily work,

learning, routines, and play. Examples such as using a digital thermometer to check temperature

before going outside or parents checking work emails on a phone are appropriate. Students

should participate in classroom discussions and activities where digital devices are used for

communicating, learning, or helping with a task. Examples such as using manipulatives, role-

play, or simple digital tools are appropriate.

Students are not expected to name all device types or explain technical details. Students are not

required to operate digital devices independently or using advanced features of digital devices.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 6. Define computational problems.

Disposition(s) Sense of Belonging in CS

E1-CAS-17: Describe how computing is used by people in your life at home, school, and work.

Boundary
Statement(s)

Students should identify and describe simple, familiar examples of how people use computing

devices every day at home, school, or in the community. Examples such as a teacher using a

tablet to read a story, a parent using a phone to call family, or a sibling using a computer to do

schoolwork are appropriate. This practice of observing people’s current use of computing aligns

with human centered design practices and can assist students in understanding users’ needs.

Students are not expected to describe the internal parts of computers or the complex inner

workings of the computing systems technology. Students are not required to use the computing

devices themselves or to know specific technical terms.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

138© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

E2-CAS-17: Investigate how your personal interests connect to computing in different industries and
careers.

Boundary
Statement(s)

Students should explore and describe, in simple terms, how their passions and hobbies connect

to computing. They should also investigate how computing is used in different jobs and

industries that relate to those interests. For example, a student who loves drawing could learn

how artists create digital illustrations or a student who enjoys sports exploring how coaches use

computers to track scores and performance are appropriate.

Students are not expected to understand technical details about how computing systems work,

specific job qualifications, or the exact tools used in various careers. Students are not required

to conduct in-depth career research or simulate real-world industry work.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 6. Define computational problems.

Disposition(s) Sense of Belonging in CS, Curiosity

E3-CAS-19: Explain how people in different industries use computing technologies and skills to
accomplish their work.

Boundary
Statement(s)

Students should describe how people in different fields (e.g., healthcare, transportation,

entertainment) use computers and basic computing skills (e.g., finding information, storing data,

communicating, creating media) to do their jobs. Examples such as a bus driver following GPS

routes, an animator creating cartoons using digital tools, or a shop owner tracking inventory on

a laptop are appropriate.

Students are not expected to understand how the identified technologies work or to

demonstrate the referenced computing skills. Students are not required to research industries or

careers in depth or understand training requirements.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Resourcefulness, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

139© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

E4-CAS-19: Investigate how the workforce adopts new computing technologies and continues to
update their computing skills.

Boundary
Statement(s)

Students should examine and analyze how people in a variety of careers have learned and

updated computing skills to adapt to changes in their work. Examples such as doctors learning

to use digital records, teachers adopting video conferencing tools to teach remotely, farmers

using GPS technology to plant and cultivate crops more precisely, or programmers applying AI

tools to shorten development and debugging time are appropriate.

Students are not expected to conduct formal research or interviews with the workforce.

Students are not required to demonstrate the computing skills or use the tools used by the

workforce.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Persistence, Curiosity

E5-CAS-19: Examine how professionals collaborate while using computing technologies to solve
problems.

Boundary
Statement(s)

Students should focus on being able to describe ways different professionals (e.g.,

scientists, doctors, artists, engineers) work together on a task using common digital tools

for communication and sharing information. Real-life scenarios, like doctors sharing digital

X-rays to diagnose a patient or architects using shared design software to plan a building, are

appropriate.

Students are not expected to understand the technical details of how the network or

collaborative software functions. Students are not required to engage in complex collaborative

projects or to use professional tools.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Reflectiveness, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

140© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

MS-CAS-44: Analyze how workers in different careers use computational thinking to solve real-world
problems.

Boundary
Statement(s)

Students should investigate and describe examples of computational thinking across a range

of professions. For example, they might analyze how a game designer uses algorithms to

balance gameplay, how an environmental engineer uses data models to predict flooding, or

how a social media manager applies pattern recognition to understand audience engagement.

Students should be able to connect computational thinking concepts (such as abstraction,

decomposition, or pattern recognition) to specific job functions, identifying parallels between

how they think when coding and how professionals think when solving domain-specific

problems.

Students are not expected to explore specialized programming frameworks or conduct domain-

specific simulations that require advanced mathematics, physics, or proprietary software.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Computational Thinking: 6. Define computational problems.

Disposition(s) Sense of Belonging in CS, Creativity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

141© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

MS-CAS-45: Evaluate how automation in technology can create or replace jobs and change how
people work.

Boundary
Statement(s)

Students should explore how automation technologies (e.g., robotics, artificial intelligence,

and machine learning) have changed or are changing the nature of work across industries,

and analyze the social and economic trade-offs of automation. Examples where automation

improves efficiency, accuracy, and safety, as well as cases where it disrupts or replaces jobs,

are appropriate. Students should also consider how automation affects job tasks and skill

requirements, raises ethical and human-centered questions, and prompts workers and industries

to adapt through upskilling, reskilling, or new roles.

Students are not expected to design or program automated systems, conduct in-depth

economic analyses, or engage in labor-market forecasting.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Foundational Standards for PK–12

142© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Computing & Society

History of Computing

Emerging Technologies

Humans and Computing

Career Exploration

HS-CAS-46: Analyze narratives about how diverse teams of people used computational thinking and
technologies to solve problems.

Boundary
Statement(s)

Students should analyze professional narratives to understand the real-world application of

computer science, including how CS is used at work, the kinds of challenges that practitioners

face, and how they contribute to a more inclusive field. A concrete example of this could be

having students analyze a podcast or video series featuring computer science professionals

from diverse backgrounds and then identifying how they use their skills and have navigated

workplace barriers.

Students are not expected to conduct formal, academic research on these topics or to interview

professionals themselves, but rather to analyze existing, publicly available narratives. Students

are not required to solve complex social problems, but rather to understand and articulate the

issues and solutions presented in the narratives.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Reflectiveness

HS-CAS-47: Connect computing knowledge and skills acquired to students’ personal goals and
career aspirations.

Boundary
Statement(s)

Students should evaluate how their personal interests and career aspirations connect to

computing knowledge and skills. This involves critically reflecting on their own strengths and

passions and researching how these can be applied in various computing-related fields.

Students are not expected to make a final career choice or to pursue an internship or work-

based learning experience. Students are not expected to make a final commitment to a specific

career path.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Reflectiveness, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

143© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Specialty Standards for High School

What are Specialty Standards?

Specialty Standards define advanced, domain-specific learning
beyond foundational PK–12 CS content. The Standards are organized
into two tiers (Specialty I and Specialty II) across six high school
specialty areas identified through the Reimagining CS Pathways
project:

•	 Software Development

•	 Cybersecurity

•	 Data Science	

•	 Physical Computing

•	 Artificial Intelligence (AI)

•	 Game Development

Specialty I standards cover the introductory knowledge and skills
essential to a chosen specialty area, serving as the first dedicated
learning experience in that domain. Specialty II standards describe
advanced study within the specialty area, designed to prepare
students for college-level coursework or industry-level certifications.

These specialty areas are intended for students who have a particular
interest in one or more specific fields, including those who wish to
pursue computing-intensive postsecondary education.

Additionally, one level of X+CS Standards has been developed to
guide the integration of foundational high school CS content into
other subject areas, like Journalism or Biology.

How do Specialty Standards Differ From Foundational
Standards?

The Foundational Standards aim to prepare every student for a world
powered by computing, while the Specialty Standards delineate
learning outcomes beyond foundational CS that are aligned with
particular specialty areas. These learning outcomes are intended
to inform the development of learning experiences (including but
not limited to courses and pathways) for students who choose to
continue their study of CS beyond the foundational standards. The
core differences between Foundational and Specialty Standards lie in
the target audience, goal, and scope:

Foundational Standards Specialty Standards

Target
Audience

All PK–12 students. High school students
who pursue continued
CS learning beyond
the foundational PK–12
standards.

Primary
Goal

Develop CS knowledge,
skills, and dispositions for
informed participation
in society, critical content
consumption, responsible
creation, and general
problem-solving.

Develop deeper, domain-
specific knowledge, skills,
and dispositions that align
with student interests and
related pathways to college
and/or career.

Scope Broad content across
five concepts: Algorithms
& Design, Programming,
Data & Analysis, Systems &
Security, and Computing &
Society.

Focused, advanced content
progressions tailored to
a CS subdiscipline (e.g.,
software development,
artificial intelligence) or a
CS-intensive discipline (e.g.,
data science, game design,
computational art).

https://reimaginingcs.org/

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

144© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

How to Implement Specialty Standards

Specialty Standards are flexible guidelines that can be implemented in a variety of ways depending on local context, resources, and student
interest. Like the Foundational Standards, they can be implemented through standalone experiences, integrated with other disciplines, or a
combination of the two.

1.	 Develop Sequential Courses/Experiences: Package the standards into discrete, sequential course pathways. These could focus on one
specialty area or combine multiple areas. Samples are in the following table:

Strategy Course 1 Course 2

Exploratory Specialty
Pathway

Course Title: Programming the Future

Standards: Subsets of Specialty I standards across

Software Development, Artificial Intelligence,

Cybersecurity, and Data Science

Pre-requisites: Foundational CS

Sample rationale for offering: Many students enjoyed

their foundational CS experience and want to continue

their learning. They want to maintain a broad view of

computer science before they dive more deeply into a

singular subdomain.

Course Title: Information and Network Security

Standards: Cybersecurity Specialty II (and any

Cybersecurity Specialty I standards that were not

covered in Programming the Future)

Pre-requisites: Programming the Future

Sample rationale for offering: After offering

Programming the Future, student interest seemed to

favor cybersecurity, so an additional course opportunity

was created in this area.

Focused Specialty
Pathway

Course Title: AI Fundamentals

Standards: Artificial Intelligence Specialty I

Sample rationale for offering: The local community,

including parents and employers, prioritize learning

opportunities to build specialized knowledge in AI.

Course Title: Developing AI Applications

Standards: Artificial Intelligence Specialty II

Sample rationale for offering: Students developed

their skills and confirmed their interest in AI through

AI Fundamentals and wanted to continue to learn even

more about how AI works and its applications.

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

145© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

2.	 Augment a Foundational Course to Emphasize One or More Specialty Areas: Incorporate content from a specialty area into foundational CS
learning experiences to increase early exposure to specialty areas and/or create thematic foundational experiences. This might include using
AI Specialty Standards to develop an AI unit that is incorporated into a foundational CS course or using cybersecurity Specialty Standards to
dive deeper into Systems & Security concepts within a foundational experience.

3.	 Guide Integrated Courses/Experiences: Use the Specialty Standards to structure interdisciplinary courses/experiences that blend CS with
other subjects (e.g., Computational Biology or Computational Journalism), ensuring the CS depth goes beyond the foundational level. This
approach requires co-requisite knowledge in the non-CS discipline (X). X+CS specialty standards could be used across any discipline, however
other specialty area standards can inform how CS concepts might be integrated into other disciplines as well (e.g., leverage Data Science
Specialty Standards to integrate CS into math coursework). The table below shows a course progression that infuses CS and journalism:

Foundational Courses X+CS Course

Computer Science Foundations

Computer Science Foundations supports all high school students,

regardless of postsecondary goals, in developing the knowledge,

skills, and dispositions necessary to navigate and understand the

technology-driven world in which they live. Course content, organized

into five concepts: Algorithms & Design, Programming, Data & Analysis,

Systems & Security, and Computing & Society.

Introduction to Journalism

Introduction to Journalism includes the fundamentals of gathering,

writing, and reporting news stories across various media platforms.

Students learn essential skills including conducting interviews, fact-

checking, understanding media ethics and law, and recognizing

different story formats such as news articles, features, and opinion

pieces. The course typically emphasizes critical thinking, effective

communication, and the role of journalism in a democratic society.

Computational Journalism

Designed for students who have completed a foundational computing

course as well as a foundational journalism course, this class exposes

students to computational techniques and issues related to journalism,

including:

•	 Ethical issues, including data privacy and security

•	 Language processing and text analysis

•	 Reporting on technology and the technology industry

•	 Data journalism, including data visualization

•	 AI and its impact on the field of journalism

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

146© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

The Relationship Between Specialty Standards and
Career and Technical Education (CTE)

Specialty Standards and CTE Frameworks serve different, yet
compatible, purposes. Specialty Standards detail domain-specific
learning for high school students who have already completed a
foundational CS learning experience, while CTE typically includes a
specific emphasis on workplace readiness and industry-recognized
credentials. For those working in CTE spaces, Specialty Standards
can:

•	 Align with existing CTE pathways,

•	 Supplement CTE courses and pathways, and

•	 Inform the refinement of CTE standards and curricula to
increase the depth and/or breadth of CS content.

Specialty Standards are not exclusively intended to complement
CTE experiences—they may also inform the development of
academic courses and pathways, integrated studies, and informal or
non-traditional learning experiences (e.g., out-of-school time).

Naming Conventions for Specialty Standards

Each of the identifiers for specialty standards follows a naming
convention similar to the one for foundational standards:

Level

S# -

Focus area

YYY -

Number

##

The first two characters indicate Specialty I (S1) or Specialty II (S2)
standards. The three characters in the next section indicate the
focus area:

Abbreviation Focus Area

SWD Software Development

CYB Cybersecurity

AIN Artificial Intelligence

PHY Physical Computing

DSC Data Science

GMD Game Development

XCS X + CS

The last two digits are the standard number. Numbering begins with
01 for Specialty I standards in each focus area. Specialty II standards
in each focus area begin with 01 as well.

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

147© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

Software Development

Specialty I

S1-SWD-01: Apply linear data structures to organize and access collections of data when solving
computational problems.

Boundary
Statement(s)

Students should be able to analyze a computational problem and select appropriate linear data

structures to store and manage data. Students should use arrays for fixed-size collections accessed

by position, dynamic arrays (lists) for collections that grow or shrink, linked lists for efficient insertion

and deletion, stacks for last-in-first-out access, and queues for first-in-first-out access. For example,

students could use a dynamic array to store temperature readings collected over time, a stack to

implement an undo feature in an application, or a queue to manage print jobs in the order they were

submitted. Students should use built-in or library implementations and their associated methods.

Students are not expected to implement these data structures or their operations (e.g., insert, delete,

search) from scratch. Students do not need to use dictionaries, trees, graphs, or heaps.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Critical Thinking, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

148© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-SWD-02: Design software that accounts for scalability and manages complexity through abstraction.

Boundary
Statement(s)

Students should apply design principles that promote maintainable and extensible software. Students

should make intentional decisions about program structure, data organization, and relationships

between components. They should consider how their software will handle growth (e.g., more users,

more data, more features) and apply abstraction to manage complexity. For example, students could

design a social media application that organizes data efficiently to support adding more users and

posts without rewriting core functionality.

Students do not need to handle scalability challenges requiring specialized infrastructure (e.g.,

multiple servers, distributed databases). Students are not expected to perform algorithm complexity

analysis or optimize code for speed and memory usage.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Persistence, Resourcefulness, Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

149© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-SWD-03: Use integrated development environment (IDE) features to streamline software development,
including code editing, debugging, version control, and project management.

Boundary
Statement(s)

Students should be able to use the core features of an IDE to increase their efficiency and
effectiveness in developing software. This includes utilizing the IDE’s built-in tools for syntax
highlighting, autocomplete, and real-time error detection while writing code. Students should be
able to use the integrated debugger to set breakpoints, step through code, and inspect variables to
diagnose and fix logical errors. Students should also be able to interact with a version control system
directly within the IDE to manage changes to their code, commit new versions, and collaborate on
projects. The IDE’s project management features, such as organizing files and folders and managing
dependencies, should also be used to maintain a structured project.

Students are not expected to deeply understand the underlying mechanisms of these tools (e.g., how
the debugger works at a machine level), set up complex IDEs from scratch, or configure custom build
processes. Students should focus on practical application and using the IDE as a powerful tool for a
streamlined development workflow.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Resourcefulness

S1-SWD-04: Refine a user interface design using accessibility and responsive design tools.

Boundary
Statement(s)

Students should be able to evaluate the effectiveness of user interface design choices in a digital
product based on established principles such as contrast, alignment, proximity, and readability. For
example, students could analyze a mobile app’s user interface and provide a written critique of how
element alignment and color contrast affect readability for users with low vision.

Students are not expected to design graphics. Students are not expected to create design systems
that specify detailed guidelines for all visual and interaction elements across a product.

Pillar(s) and
Practice(s)

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Human-Centered Design: 12. Design computational technologies that empower and inform users.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

150© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-SWD-05: Apply the user experience design principles to create software that serves intended users and
contexts.

Boundary
Statement(s)

Students should be able to apply user experience design principles to evaluate and improve

software for intended users and contexts. Students should conduct heuristic reviews, or systematic

evaluations of software against established UX principles, using criteria such as usability, consistency,

accessibility, and user control. Students should identify how well the software serves its intended

users and contexts, considering factors like diverse abilities, linguistic backgrounds, and cultural

contexts. Students should make design decisions or recommendations based on UX principles. For

example, students might review an educational app and identify that it lacks keyboard navigation

for users who cannot use a mouse, uses low color contrast making it difficult for users with visual

impairments, and includes idioms that may not translate well across cultures. Students would then

redesign or recommend changes to address these issues using established accessibility guidelines.

Students are not expected to conduct user testing or collect feedback from actual users. Students

are not expected to create accessibility solutions beyond applying established guidelines (e.g., WCAG

standards).

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Reflectiveness, Critical Thinking, Creativity

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

151© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-SWD-06: Evaluate AI-assisted test case recommendations to identify and address gaps in test coverage.

Boundary
Statement(s)

Students should be able to critically evaluate test cases from both human and AI sources to identify

coverage gaps, particularly edge cases and complex boundary conditions that human testers may

overlook. For example, students could use an AI-powered coding or generative testing assistant

to review their initial test suite, then determine which AI-recommended test cases would improve

coverage.

Students are not expected to design, train, or modify the underlying machine learning models used

to generate AI test case recommendations.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Persistence

S1-SWD-07: Use AI-assisted IDE features to understand unfamiliar code and identify errors during
debugging.

Boundary
Statement(s)

Students should be able to use AI-assisted IDE features for code comprehension and debugging

tasks. This includes generating code summaries and documentation to understand unfamiliar or

legacy code, and using intelligent code completion, error detection, and refactoring suggestions

during debugging. For example, students could use an AI assistant to generate a summary explaining

an unfamiliar function’s purpose, inputs, and outputs before fixing a bug. Students should apply

existing, commercially available or open-source AI IDE features.

Students are not expected to manually configure or fine-tune the underlying AI/Machine Learning

models within the IDE (e.g., modifying the weights or architecture of the code-generation

transformer model), integrate external non-IDE based AI tools, or develop custom AI extensions for

their IDE.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Resourcefulness, Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

152© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-SWD-08: Design thorough and systematic test cases that exercise the functionality of a program,
considering potential edge cases, error conditions, and user inputs.

Boundary
Statement(s)

Students should create a comprehensive test plan that includes a variety of test case types, such as

unit tests and integration tests, and apply them systematically to a software project involving multiple

functions and data structures. Students should design tests for valid inputs, edge cases (e.g., empty

strings, extreme values, zero), boundary conditions, and error conditions (e.g., invalid data types,

out-of-range values, missing required inputs, format violations). For example, when testing an input

field that expects a number between 1 and 100, students should test valid values (e.g., 50), boundary

values (e.g., 1, 100), values outside boundaries (e.g., 0, 101), and invalid types (e.g., text instead

of numbers). When testing an input field that expects a string, students should test strings that

contain special characters that might break code or formatting (e.g., single quotes, double quotes,

semicolons, angle brackets, slashes) and ensure the program behaves robustly.

Students are not expected to implement automated testing frameworks or manage quality assurance

processes for large systems. Students are not expected to perform adversarial security testing (e.g.,

penetration testing).

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

153© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-SWD-09: Develop software collaboratively, setting team norms to integrate diverse viewpoints, using
software development best practices.

Boundary
Statement(s)

Students should work in teams where different members contribute to different parts of a software

project. Students should use version control tools to manage software development workflows,

including creating and managing branches, performing code reviews, resolving merge conflicts,

and using pull requests to integrate contributions. Students should demonstrate a capacity for

inclusive collaboration by establishing team norms that solicit and integrate diverse perspectives

on code design, user experience, and ethical considerations during development. For example,

students could use version control tools to develop a multi-module program where team members

submit and review pull requests for new features. Review discussions should address both technical

implementation and broader considerations such as usability and ethical implications, ensuring that

input from members with different areas of expertise (e.g., lived experience with a particular user

community, user interface design, accessibility, data privacy) shapes the final decisions.

Students are not expected to administer version control servers, manage repository security policies,

or integrate version control with continuous integration/continuous deployment (CI/CD) pipelines.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Disposition(s) Sense of Belonging in CS, Reflectiveness, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

154© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

Specialty II

S2-SWD-01: Apply associative and hierarchical data structures to solve computational problems.

Boundary
Statement(s)

Students should be able to analyze a computational problem and select appropriate associative and

hierarchical data structures including dictionaries (hash tables), trees, graphs, and heaps. Students

should use built-in or library implementations and their associated methods. Students should use

dictionaries for efficient key-value lookups, trees for hierarchical data or ordered collections, graphs

for modeling networks and relationships, and heaps for priority-based access. Students should be

able to explain relative efficiency trade-offs in practical terms (e.g., which operations are faster or

use less memory). For example, students might use a graph structure to find the shortest path in

a navigation app, a dictionary to quickly look up student records by ID, or a tree to organize a file

system hierarchy.

Students are not expected to implement these data structures or their operations from scratch.

Students are not expected to use Big O notation to express time and space complexity.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Persistence, Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

155© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-SWD-02: Develop a prototype using diverse user personas and user journey maps to guide design decisions.

Boundary
Statement(s)

Students should be able to create and use user personas and user journey maps to guide ideation

and prototyping. User personas represent different types of users and their characteristics, needs,

and goals. User journey maps visualize how users interact with a product from initial contact through

achieving their goals, highlighting pain points and opportunities for improvement. Students should

use personas and journey maps in the early stages of design to guide and justify design decisions. For

example, when designing an educational app, students might create personas representing different

user types (e.g., a student with a learning disability, a highly motivated student, a parent) and develop

user journey maps for each persona to ensure the design addresses diverse needs.

Students are not expected to conduct market research to validate personas or produce fully

functional applications.

Pillar(s) and
Practice(s)

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Human-Centered Design: 12. Design computational technologies that empower and inform users.

Disposition(s) Creativity, Reflectiveness, Critical Thinking

S2-SWD-03: Develop a project in interactive cycles, documenting changes and the rationale for each cycle.

Boundary
Statement(s)

Students should be able to manage a software development project using an iterative process. This

means breaking the project into multiple distinct cycles of planning, implementation, testing, review,

and documentation that continuously refine and build project features. Students should document

each cycle with a clear record of changes made and the reasoning behind them (e.g., bug fix, new

feature, response to user feedback). For example, in one cycle a student might build a basic user login

system, in the next cycle add a user profile feature, and in a third cycle implement a search function.

Students are not expected to use formal, complex project management methodologies like Agile or

Scrum and their specific ceremonies (e.g., daily stand-ups, sprint retrospectives).

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Human-Centered Design: 11. Use iterative design processes.

Disposition(s) Persistence, Reflectiveness, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

156© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-SWD-04: Modify an existing algorithm to improve efficiency, considering factors such as data
structures and algorithmic paradigms.

Boundary
Statement(s)

Students should be able to analyze an existing algorithm and identify opportunities to improve
efficiency in terms of time or space complexity (e.g., big-O notation). This involves understanding
how different data structures (e.g., arrays, dictionaries, trees) impact performance and selecting
a more suitable one. Students should be able to apply algorithmic paradigms such as divide-
and-conquer to break a problem into smaller subproblems. Students should apply established
principles to modify and optimize existing solutions, analyzing performance and making deliberate
improvements. For example, a student might improve a linear search algorithm for a large, sorted
dataset by using a more efficient data structure and applying binary search.

Students are not expected to invent new algorithmic paradigms.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking, Persistence

S2-SWD-05: Implement the user experience design process by collecting data from intended users.

Boundary
Statement(s)

Students should be able to conduct usability evaluations on digital interfaces by observing user
interactions, collecting qualitative and quantitative feedback, and documenting findings in a
structured format. For example, students could create a user survey or think-aloud protocol to test
a peer’s program or a real-world app and compile a report outlining specific usability issues (e.g.,
confusing navigation, inaccessible features).

Students are not expected to obtain research ethics approval, recruit participants from outside of
their peer group, or use specialized usability testing tools (e.g., eye-tracking software). Students are
not expected to perform statistical analysis beyond calculating basic descriptive statistics for survey
questions (e.g., average ratings, distribution of responses to Likert-type items).

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

157© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-SWD-06: Apply UI design principles and tools to create user-friendly, accessible, and responsively
designed interfaces.

Boundary
Statement(s)

Students should be able to create user interfaces for digital products that are usable, accessible,
and responsive across different devices and screen sizes. For example, students could develop a
web application that adapts its layout and functionality to be effective on smartphones, tablets, and
desktop computers, ensuring that elements are navigable and legible for users with different needs.

Students are not expected to create applications that function on every possible device and operating
system or master responsive design frameworks.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Creativity

S2-SWD-07: Apply AI-assisted IDE features to test and refine complex software projects.

Boundary
Statement(s)

Students should be able to apply AI-assisted features within an IDE to enhance the testing and
refinement phases of a complex software project. This includes using features for automated test
generation (e.g., unit test boilerplate or test cases), identifying redundant or inefficient tests, and
receiving real-time suggestions for code optimization and performance improvements during the
refinement phase. Students could use an AI tool to generate a basic suite of unit tests for a new class
they have written, review and critique the generated tests for test coverage, and then accept the IDE’s
AI-driven recommendation to refactor a slow loop into a more performant structure.

Students are not expected to perform deep-dive performance profiling, interpret low-level hardware
performance counters, or manually implement complex statistical analysis of test results derived
from large-scale, enterprise-level performance testing tools. The “complex software project” should
remain within the scope of advanced high school application development (e.g., multi-module, multi-
file application with external libraries).

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

158© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-SWD-08: Employ systematic debugging techniques on complex software projects to identify, isolate,
and fix program errors, utilizing debugging tools and effective problem-solving strategies.

Boundary
Statement(s)

Students should be able to apply formal debugging methodologies (e.g., divide and conquer,

binary search, backtracking) to software projects involving multiple files, libraries, and external

dependencies. This includes using advanced IDE debugger features such as setting conditional

breakpoints, inspecting the call stack and watch window for complex data structures, and remote

debugging. For example, students could debug a multi-module program with a subtle bug by

first reproducing the error, isolating the fault by tracing state changes across functions, and then

implementing a fix. Students should focus on logical program errors rather than systems-level

failures.

Students are not expected to debug at the operating system level, such as analyzing assembly code,

directly manipulating memory registers, or performing post-mortem memory dump analysis for

errors in production operating systems or hardware drivers.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Persistence, Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

159© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-SWD-09: Apply an industry-standard software development process to plan and deliver software
projects while prioritizing equity and justice.

Boundary
Statement(s)

Students should be able to select and apply an industry-standard software development process

(e.g., Agile Scrum, Kanban, Waterfall) to a medium-to-large scale project. Students should effectively

use tools (e.g., Trello, Jira, GitHub Projects) to manage tasks, track progress, and communicate with

team members. Students should demonstrate that equity and justice are non-negotiable priorities

that override technical or budgetary pressures, requiring them to articulate and justify project

modifications based on ethical or societal impacts. For example, a student team could adjust a

project timeline and scope to prioritize features that improve accessibility for users with disabilities or

mitigate algorithmic bias, even if it delays the release or requires refactoring complex code. Students

should work on projects of high-school appropriate complexity, emphasizing process application and

ethical prioritization.

Students are not expected to manage the budget or financial resources of the project, use advanced

proprietary or enterprise-level project management software, or manage external stakeholders

beyond their classroom or school environment.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Inclusive Collaboration: 4. Manage computing projects.

Disposition(s) Sense of Belonging in CS, Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

160© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

Cybersecurity

Specialty I

S1-CYB-01: Analyze network services and protocols to explain their role in secure communication and
potential vulnerabilities.

Boundary
Statement(s)

Students should analyze the functionality and security implications of common network services and

protocols (e.g., DNS, DHCP, ARP, BGP, SNMP), going beyond simply identifying protocols to critically

evaluating their design and implementation flaws. For example, students could perform a Man-in-

the-Middle (MitM) simulation in a safe, isolated lab environment to demonstrate the vulnerabilities

of unencrypted protocols like HTTP and Telnet, and then implement and configure their secure

counterparts (HTTPS, SSH) to mitigate those risks.

Students are not expected to design or implement novel network security protocols or perform

network penetration testing beyond specific controlled exercises. Students are not required to have

kernel or hardware knowledge.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

161© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-CYB-02: Explain the concepts of the OSI model and its role in network communication.

Boundary
Statement(s)

Students should be able to explain the specific function of each of the seven layers of the OSI model
and articulate the concepts of encapsulation (data moving down the stack with headers/trailers
added) and decapsulation (data moving up the stack with headers/trailers removed) as data travels
between hosts. For example, students could make a web request from the Application Layer down
through the stack on the sender’s device and then back up on the receiver’s server, identifying how
the data unit changes (e.g., from segment to packet to frame).

Students are not expected to memorize all the specific protocols associated with every layer of the
7-layer OSI model or the precise structure of all headers and trailers. They are also not expected to
manually calculate checksums or implement custom network software that directly manipulates data
at lower layers of the stack.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking

S1-CYB-03: Classify a network by its protocols, topologies, and addressing schemes.

Boundary
Statement(s)

Students should be able to use three characteristics of a network (protocols, topologies, and
addressing schemes) to precisely describe and differentiate between various real-world network
architectures (e.g., classifying a network as a private LAN using a star topology, the TCP/IP protocol
suite, and IPv4 addressing). Students could analyze the output from network configuration tools
(e.g., ipconfig/ifconfig or a basic network scanner) on an unknown network to correctly identify the
network type, its structure, and its addressing scheme, and explain how these elements interact.

Students are not expected to perform detailed packet-level analysis of network traffic (e.g., using
Wireshark to decipher raw hex data for obscure protocols) or implement network routing protocols
from scratch.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

162© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-CYB-04: Investigate security risks in digital systems and corresponding mitigation strategies.

Boundary
Statement(s)

Students should be able to investigate and model common security risks by focusing on three key

failure areas: configuration weaknesses (e.g., default passwords, unnecessary open ports), insecure

devices (e.g., unpatched software, weak encryption settings on IoT devices), and risky user behavior

(e.g., poor password habits, clicking phishing links). Students should analyze case studies or use an

isolated virtual environment to identify these risks and then propose appropriate mitigation strategies

for each. For example, students could analyze a policy document and identify that “always using the

default administrative password” is a configuration weakness, and the proposed mitigation strategy is

“enforcing a complex password policy and disabling the default administrative account.”

Students are not expected to perform penetration testing against non-consensual targets or conduct

live social engineering attacks on real users.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

163© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-CYB-05: Apply diagnostic tools and techniques to resolve network connectivity issues.

Boundary
Statement(s)

Students should be able to systematically apply a sequence of diagnostic tools and techniques (e.g.,

ping, tracert/traceroute, ipconfig/ifconfig, netstat, basic packet capture analysis) within a simulated

or isolated network environment to effectively troubleshoot and resolve connectivity issues. Students

must analyze how a network’s topology (e.g., faulty cable in a star network), protocols (e.g., incorrect

IP address or subnet mask), and security configurations (e.g., an unintended firewall rule blocking

a port) contribute to the failure. For example, students could use the OSI model as a framework to

logically isolate a problem, use ping to test Layer 3 connectivity, and then check firewall logs to rule

out a Layer 4 security block.

Students are not expected to troubleshoot inter-domain routing failures, analyze encrypted

commercial network traffic beyond basic header inspection, or physically replace or repair failed

hardware components.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

164© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-CYB-06: Use command-line programming to audit system processes, monitor network traffic, and scan
for vulnerabilities.

Boundary
Statement(s)

Students should be able to systematically use command-line tools within a virtual or isolated

environment to perform basic security auditing tasks. Students should use the command line for

defensive posturing, analysis, and auditing within a controlled environment. This includes using

native operating system commands (e.g., PowerShell, Bash) and specialized tools (e.g., netstat,

ps, nmap, or similar non-harmful network scanner) to audit system processes for unusual activity,

monitor network traffic for open ports or unexpected connections, and scan for vulnerabilities on

their own virtual machines or explicitly authorized lab targets. For example, students could write a

short Bash script that automates the collection and logging of currently running processes and active

network connections, then analyze this output to identify unauthorized services.

Students are not expected to develop custom exploitation code, perform any scanning or auditing of

real-world, external, or unauthorized systems, or interact with tools requiring industry certifications.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Resourcefulness, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

165© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-CYB-07: Analyze how common cyber threats related to network activity exploit system vulnerabilities.

Boundary
Statement(s)

Students should be able to identify and analyze common network-specific cyber threats by explaining
how they work and clearly linking the attacks to the specific system or protocol vulnerabilities they
exploit. This includes analyzing common attack types (e.g., IP spoofing exploits the trust model of IP,
Distributed Denial of Service attacks exploit bandwidth or resource limitations, and passive packet
sniffing exploits unencrypted network protocols). For example, students could analyze a scenario
where a client receives a false DNS response and explain that this is likely a DNS spoofing attack
exploiting the lack of authentication in the standard DNS protocol.

Students are not expected to perform live attacks, develop mitigation code, or conduct security
research to discover previously unknown vulnerabilities.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Disposition(s) Critical Thinking, Reflectiveness

S1-CYB-08: Compare encryption methods used in network communication and how they protect privacy
and security.

Boundary
Statement(s)

Students should be able to conceptually compare the fundamental mechanisms of common network
encryption methods, focusing primarily on the distinction between symmetric key cryptography (e.g.,
AES) and asymmetric key cryptography (e.g., RSA), and then evaluate why the resulting confidentiality
and integrity are essential for both individual privacy and organizational security. Students should
go beyond basic data protection to include the societal implications of secure communications
protocols like HTTPS and TLS/SSL. For example, students could compare the speed and key
distribution methods of AES versus RSA and then evaluate why an unencrypted connection (HTTP)
poses a critical privacy risk for online financial transactions.

Students are not expected to mathematically derive or break encryption algorithms or investigate the
policy requirements of certificate authorities.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

166© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-CYB-09: Classify a security threat using the CIA triad, states of data, and types of control.

Boundary
Statement(s)

Students should be able to classify any given cyber threat or security incident by systematically

mapping its impact across three distinct security models: 1) the CIA triad (i.e., identifying which

principle—confidentiality, integrity, or availability—is affected); 2) the state of data being targeted

(i.e., at rest, in transit, or in use); and 3) the appropriate type of control needed for mitigation (i.e.,

preventative, detective, or corrective). For example, students could classify a ransomware attack as

primarily impacting availability while the data is at rest, and determine the best response involves a

corrective control—restoring from backups—and a preventative control—endpoint protection)

Students are not expected to design and implement the security controls.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking, Reflectiveness

S1-CYB-10: Discuss security measures to protect sensitive information.

Boundary
Statement(s)

Students should be able to discuss and categorize security measures beyond basic passwords and

personal encryption, including technical, physical, and administrative controls. The discussion must

cover common preventative measures like firewalls and network segmentation, detective measures

like intrusion detection systems (IDS) and security auditing, and corrective measures like data

backup and disaster recovery plans. For example, students could discuss the difference between a

preventative technical control (e.g., a strong password policy) and a detective administrative control

(e.g., security audit logs or incident reports).

Students are not expected to implement or configure organizational systems or design organizational

security policies. Students do not need to discuss the legal requirements of different compliance

frameworks (e.g., HIPAA, GDPR) in detail.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

167© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-CYB-11: Explain the importance of cybersecurity policies in protecting organizational assets and
mitigating risks.

Boundary
Statement(s)

Students should be able to explain the crucial role of cybersecurity policies (e.g., Acceptable Use

Policy, Remote Access Policy, Data Classification Policy) as the administrative and governance

foundation for protecting organizational assets and mitigating risks. This explanation must detail

how policies translate business and legal requirements into actionable rules that define expected

user behavior, mandate technical controls, and establish accountability. For example, students could

explain that a Data Classification Policy ensures that sensitive information is properly labeled and

handled, which directly mitigates the risk of a data breach by mandating specific technical controls

like encryption.

Students are not expected to draft or revise organizational security policies for a real company or

design a regulatory compliance program.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

168© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-CYB-12: Identify key components of effective security policies.

Boundary
Statement(s)

Students should be able to identify the key components of effective security policies by recognizing
the elements that are necessary for a policy to be actionable, enforceable, and aligned with
organizational goals. Key components include, but are not limited to: a clear purpose and scope (i.e.,
what the policy covers), the mandatory requirements/rules (i.e., what users must do), defined roles
and responsibilities (i.e., who is accountable), and an enforcement/consequences section (i.e., what
happens when the policy is violated). For example, students could analyze an Acceptable Use Policy
and clearly identify the section that defines the acceptable resources and user activities (i.e., scope)
separate from the section that details disciplinary actions for misuse (i.e., enforcement).

Students are not expected to draft organizational policies or analyze the legal sufficiency of policy
components.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness

S1-CYB-13: Explain social engineering techniques and how they exploit human cognitive biases and
organizational weaknesses.

Boundary
Statement(s)

Students should be able to deconstruct common social engineering attacks, identifying the
specific human cognitive biases (e.g., authority, scarcity, urgency, or familiarity) and organizational
weaknesses (e.g., poor physical security, lack of training) that the techniques exploit. For example,
students could analyze a real-world phishing campaign and map the attacker’s strategy to the
psychological principles being manipulated (e.g., using a CEO’s name to trigger an authority bias).

Students are not expected to develop or perform real-world social engineering campaigns or study
advanced psychological manipulation techniques beyond basic cognitive biases (e.g., neuro-linguistic
programming or intelligence elicitation methods).

Pillar(s) and
Practice(s)

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Human-Centered Design: 12. Design computational technologies that empower and inform users.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

169© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-CYB-14: Analyze the potential consequences of cybersecurity decisions on individuals, organizations,
and society.

Boundary
Statement(s)

Students should be able to evaluate the systemic, ethical, social, and economic consequences of

specific cybersecurity decisions on individuals, organizations, and society and the trade-offs inherent

in those choices. For example, students could analyze a corporate decision to shift all data storage

to a third-party cloud provider, evaluating the trade-offs between privacy policy changes (individual

consequences), increased security and potential loss of control (organizational consequences), and

systemic reliance on a single vendor (societal consequences).

Students are not expected to perform financial risk assessments or quantitative cost-benefit analysis.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational technologies.

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Disposition(s) Critical Thinking, Reflectiveness

S1-CYB-15: Communicate cybersecurity concepts, risks, and solutions clearly to both technical and non-
technical audiences.

Boundary
Statement(s)

Students should be able to create and deliver tailored communications about cybersecurity topics,

demonstrating the ability to translate technical details into clear, actionable language for a general

audience while maintaining necessary specificity for technical audiences. For example, students

could draft a technical report detailing a vulnerability for an IT team and a separate executive

summary explaining the risk and mitigation steps for management and general users.

Students are not expected to create publishable marketing materials or communications about active

security incidents or other public relations crises.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

170© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

Specialty II

S2-CYB-01: Integrate security features in networking hardware and software.

Boundary
Statement(s)

Students should be able to configure and integrate security features found in networking hardware
(e.g., routers, firewalls, access points) and software (e.g., host-based firewalls, intrusion detection
systems, server configurations) to establish defense-in-depth. This includes setting up a VPN tunnel
on a router, configuring Access Control Lists on a simulated switch or router, and integrating a host-
based firewall on a server. For example, students could use virtual network labs or simulation tools
to configure firewall security policies ensuring that only traffic from a specific subnet with encrypted
credentials can access a particular server.

Students are not expected to physically manipulate hardware, write custom firmware for network
devices, or deploy security solutions on networks with real-time production traffic.

Pillar(s) and
Practice(s)

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Persistence

S2-CYB-02: Design a secure network, including servers, switches, routers, endpoints, and firewalls.

Boundary
Statement(s)

Students should be able to articulate security requirements of a system (e.g., servers, switches, routers,
endpoints, firewalls), select appropriate network components, and create a diagrammatic or virtual
model of a secure network architecture that incorporates best practices including network segmentation
(e.g., DMZ, VLANs) and defense-in-depth. For example, students could use network simulation tools
(e.g., Cisco Packet Tracer) or diagramming tools (e.g., draw.io) to design a secure network for a small
business, specifying the IP addressing scheme and firewall rules necessary to enforce the security policy.
Students should focus on the design and justification of the architectural decisions.

Students are not expected to physically install or configure hardware or deploy networks with more
than 50 hosts.

Pillar(s) and
Practice(s)

Human-Centered Design: 11. Use iterative design processes.

Disposition(s) Critical Thinking, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

171© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-CYB-03: Analyze the security implications of different network topologies to identify potential
vulnerabilities and mitigation strategies.

Boundary
Statement(s)

Students should be able to analyze the inherent security implications of fundamental network

topologies, identifying where a single point of failure or eavesdropping risk exists and proposing

structured mitigation strategies for each risk. This includes articulating why a mesh topology is more

resilient than a bus topology but more costly, and how a star topology’s reliance on a central device

creates a critical point requiring physical and logical hardening. For example, students could analyze

a star network diagram, identify the central switch as the main vulnerability, and recommend specific

mitigation strategies including physical access control, port security, and network monitoring.

Students are not expected to perform quantitative risk assessments, mathematically model fault

tolerance, or physically build and test networks.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

172© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-CYB-04: Analyze network traffic patterns to distinguish between normal and potentially malicious behavior.

Boundary
Statement(s)

Students should be able to monitor and analyze network traffic patterns within a controlled,

simulated environment using packet analysis tools (e.g., Wireshark) and system logs (e.g., firewall,

web server, application logs) to distinguish between normal and potentially malicious behavior. This

analysis must include identifying key indicators of compromise including unusual connection volume,

unexpected port usage, or failed authentication attempts that deviate from established baselines.

For example, students could analyze a packet capture to detect a port scan by recognizing a pattern

of multiple connection attempts to different ports from a single source and comparing this against

typical connection patterns.

Students are not expected to configure Security Information and Event Management systems,

perform real-time threat hunting on live networks, or write custom intrusion detection signatures.

Pillar(s) and
Practice(s)

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Persistence

S2-CYB-05: Use a scripting language securely to automate security operations.

Boundary
Statement(s)

Students should be able to design and implement security automation scripts (e.g., using Python,

Bash, or PowerShell) within a virtual, sandboxed environment to perform routine tasks including log

file parsing, automated vulnerability scanning setup, or user account auditing. Students should focus

on writing secure code. Students must use best practices to avoid common vulnerabilities including

hardcoding credentials, improper input validation, or command injection. For example, students

could write a Python script that uses secure libraries to fetch system logs via SSH while implementing

appropriate error handling and input sanitization.

Students are not expected to develop mission-critical security software, integrate scripts into large-

scale Security Information and Event Management systems, or create custom exploits.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

173© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-CYB-06: Implement access controls to protect sensitive information from unauthorized access and
data breaches.

Boundary
Statement(s)

Students should be able to implement foundational access control mechanisms within a controlled
virtual environment or software development project. This implementation must demonstrate
user authentication (e.g., configuring strong password requirements or implementing multi-factor
authentication), authorization (e.g., implementing Role-Based Access Control to restrict resource
access based on user roles), and data encryption (e.g., using secure libraries to encrypt sensitive data
files at rest or in transit). For example, students could develop a simple application that encrypts
a user’s sensitive data file using a standard encryption library and only decrypts it after the user
successfully passes two-factor authentication.

Students are not expected to design or implement cryptographic primitives.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Persistence

S2-CYB-07: Evaluate security risks to determine appropriate risk mitigation strategies.

Boundary
Statement(s)

Students should be able to evaluate security risks by analyzing the likelihood of a threat exploiting
a specific vulnerability and the magnitude of its potential impact on the CIA triad. Following this
assessment, students should implement appropriate risk mitigation strategies (e.g., configuring a
security control, updating software, changing a policy) to reduce the risk to an acceptable level
within a simulated environment. For example, students could evaluate the risk of unpatched software,
assess the high impact of a potential data breach, and then implement a mitigation strategy by
configuring an automated patching schedule or applying security updates to a virtual machine.

Students are not expected to perform quantitative financial risk analysis or develop novel mitigation
technologies.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Inclusive Collaboration: 4. Manage computing projects.

Disposition(s) Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

174© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-CYB-08: Discuss incident response plans and processes for real-world scenarios.

Boundary
Statement(s)

Students should be able to discuss the structure and purpose of a formal incident response plan
and identify the key steps in the incident response process (e.g., NIST’s six phases: Preparation,
Identification, Containment, Eradication, Recovery, and Lessons Learned). Students must then
simulate incident response for real-world scenarios in a safe, virtual environment, focusing on
the Identification, Containment, and Eradication phases and using critical thinking to make timely
decisions about evidence preservation and system isolation. For example, students could respond to
a simulated alert of suspicious activity, identify the threat type, contain the compromised system by
isolating it from the network, and document the steps taken.

Students are not expected to execute incident response plans during real attacks.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Persistence

S2-CYB-09: Debate how various regulations impact organizational security policies, procedures, and
compliance.

Boundary
Statement(s)

Students should be able to conduct a comparative analysis of major data protection and privacy
regulations (e.g., HIPAA for healthcare data, GDPR for personal data, PCI DSS for payment data)
and debate the specific, often costly, changes to organizational policies and procedures. The
debate should center on the tension between enhanced individual rights and data protection
versus increased administrative complexity and financial burden for organizations. Students must
accurately identify core compliance requirements of at least two regulations. For example, students
could debate GDPR’s “Right to be Forgotten” provision, examining both the privacy benefit and the
technical difficulty and cost of ensuring all data backups comply with deletion requests.

Students are not expected to analyze the technical details of regulatory audits or create compliance
frameworks.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

175© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-CYB-10: Practice responsible disclosure of vulnerabilities and incidents in accordance with
professional protocols.

Boundary
Statement(s)

Students should be able to simulate the process of responsible disclosure, demonstrating an

understanding of the ethical timeline, communication flow, and coordination required among

researchers, vendors, and the public following the discovery of a vulnerability or security incident.

For example, students could draft internal and external communications, including a CISO statement

and a vendor notification email, adhering to a defined 90-day disclosure timeline.

Students are not expected to discover or report vulnerabilities in real-world production systems.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational technologies.

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Disposition(s) Critical Thinking, Reflectiveness

S2-CYB-11: Document cybersecurity processes and decisions in a manner that supports team
coordination and accountability.

Boundary
Statement(s)

Students should be able to create formal documentation artifacts for cybersecurity processes

including change management logs or system security plans, ensuring that documents clearly

articulate the rationale, implementation details, and responsible parties for key decisions to support

team coordination and accountability. For example, students could draft an Incident Response

Playbook detailing roles, communication steps, and decision points, or a Security Architecture

Diagram with accompanying change logs.

Students are not expected to use ticketing or documentation software. Students are not expected to

produce documents that fully comply with regulations.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Disposition(s) Critical Thinking, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

176© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-CYB-12: Analyze the potential benefits, risks, and ethical implications of AI in cybersecurity, including
its use in threat detection, incident response, and offensive cyber operations.

Boundary
Statement(s)

Students should be able to analyze the dual-use nature of AI within cybersecurity by systematically

outlining its potential benefits (e.g., faster threat detection through machine learning), technical

risks (e.g., adversarial attacks against AI models), and ethical implications (e.g., bias in threat

modeling, autonomous decision-making). The analysis must specifically include how AI is used in

threat detection (e.g., pattern recognition in network traffic), incident response (e.g., automated

containment), and the ethical considerations of offensive cyber operations (e.g., potential for

autonomous weapons systems). For example, students could analyze how an AI system’s benefit

of improving threat detection speed introduces the risk of false positives and the risk of unjustly

isolating users based on biased training data.

Students are not expected to develop or train machine learning models for security or engage in

abstract philosophical debates about AI consciousness or moral agency unrelated to cybersecurity

applications.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

177© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

Artificial Intelligence

Specialty I

S1-AIN-01: Describe the differences between deterministic and probabilistic algorithms.

Boundary
Statement(s)

Students should be able to articulate the fundamental distinction between algorithms that

always produce the same output for a given input (deterministic) and algorithms that incorporate

randomness, leading to a distribution of possible outputs (stochastic/probabilistic), and be able to

identify specific scenarios where one approach is computationally advantageous over the other. For

example, students could analyze a deterministic pathfinding algorithm (e.g., Dijkstra’s algorithm)

and compare its efficiency and outcome to a probabilistic approach for the same problem (e.g., a

Monte Carlo simulation or a randomized search heuristic) when applied to large, complex graph data

structures.

Students are not expected to formally prove the convergence properties or asymptotic runtime of

complex randomized algorithms (e.g., Monte Carlo algorithms) or perform advanced calculus-based

statistical analysis on the distribution of stochastic algorithm outcomes.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

178© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-AIN-02: Compare data representations and how representation choice constrains applicable
algorithms.

Boundary
Statement(s)

Students should be able to analyze and articulate the trade-offs between different data

representations (e.g., tabular/relational data, graph/network data, image/pixel data, text/sequence

data) and explain how the chosen representation dictates the suitable class of algorithms for analysis.

Students are not expected to develop custom data representations, convert data into multiple

representations, or mathematically prove why certain algorithms cannot work with specific data

representations. Students are not required to work with specialized data formats beyond common

types (e.g., tabular, graph, image, text).

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness, Resourcefulness

S1-AIN-03: Investigate AI systems to differentiate the types of problems they address.

Boundary
Statement(s)

Students should explore and compare different types of AI systems to understand how they work and

what problems they solve. They will investigate generative AI (e.g., chatbots or image creators) and

discriminative AI (e.g., Teachable Machine or image classifiers) to see how each supports real-world

applications (e.g., language translation, image recognition, Sentiment Analysis, recommendations,

and game playing.

Students are not expected to create AI systems.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Disposition(s) Resourcefulness, Creativity

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

179© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-AIN-04: Modify AI system inputs to optimize accuracy and reduce bias in outputs.

Boundary
Statement(s)

Students should move beyond merely identifying bias in an existing AI model’s output and actively

mitigate that bias by analyzing and modifying the data used to train or as input to the model. Students

could analyze a facial-recognition model’s poor performance on dark-skinned faces, identify the lack

of diversity in the training dataset as a source of bias, and add images with the underrepresented skin

tones to improve accuracy for darker-skinned faces.

Students are not expected to understand the mathematical formulas behind fairness metrics or prove

why different fairness measures cannot be satisfied at the same time.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Critical Thinking, Reflectiveness

S1-AIN-05: Create an application using supervised learning models.

Boundary
Statement(s)

Students should be able to select an appropriate, pre-existing supervised learning model and

integrate it into a functional application that uses input data to make a prediction or classification. For

example, students could use a pre-trained image classification model (e.g., from Teachable Machine

or a Python library) and integrate it into a simple web or mobile application that allows users to

upload a photo and receive a prediction about what object is in the image.

Students are not expected to train models from scratch using raw data, develop production-ready

applications, or work with advanced architectures requiring specialized hardware (e.g., large

language models, deep convolutional networks with dozens of layers).

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Creativity, Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

180© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-AIN-06: Analyze metadata and data pipelines to support transparency in AI model selection.

Boundary
Statement(s)

Students should be able to critically analyze the entire data pipeline, from data acquisition through
data cleaning, for potential sources of bias, inaccuracy, and lack of transparency. Students should use
this analysis to support or advocate for the selection and ethical usage of a specific AI model and its
deployment context. For example, students could analyze the metadata of an image dataset (e.g.,
date of collection, sensor type, image subject) used to train a face recognition model, identifying a
lack of demographic diversity, and then clearly articulate how making this information transparent is
essential for determining the model’s appropriate scope of use (e.g., deciding the model should only
be used in non-critical applications or only on populations represented in the data).

Students are not expected to design and implement algorithmic fairness metrics (e.g., equal
opportunity difference, disparate impact).

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Disposition(s) Critical Thinking, Reflectiveness

S1-AIN-07: Explain neural network structure.

Boundary
Statement(s)

Students should be able to articulate the fundamental components of a basic feed-forward neural
network (e.g., layers, neurons, weights, biases, and activation functions) and describe the function of
each component. Students should be able to conceptually trace how a numerical input value flows
through a single neuron, is modified by the weight and bias, and then transformed by the activation
function before moving to the next layer.

Students are not expected to implement neural networks from scratch, understand the mathematical
formulas for backpropagation, or work with advanced architectures (e.g., recurrent neural networks,
transformers, convolutional neural networks with many layers).

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

181© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-AIN-08: Apply data acquisition, cleaning, and transformation techniques to prepare data for AI analysis.

Boundary
Statement(s)

Students should be able to perform hands-on application of data preparation steps, including data

acquisition from sources (e.g., CSV files, public APIs, web scraping of small-scale data), identifying

and handling missing values (e.g., imputation or removal), and performing basic transformations (e.g.,

normalization) necessary for training an AI model. For example, students could use a programming

library (e.g., Python’s Pandas) to load a raw dataset, clean inconsistent entries, convert non-numeric

features into a machine-readable format, and split the data into training and testing sets before

model application.

Students are not expected to work with massive datasets requiring distributed computing

infrastructure or implement advanced data preprocessing algorithms from scratch.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Human-Centered Design: 11. Use iterative design processes.

Disposition(s) Persistence, Critical Thinking, Resourcefulness

S1-AIN-09: Analyze the environmental impacts of widespread AI adoption.

Boundary
Statement(s)

Students should be able to quantitatively and qualitatively analyze the environmental impacts of AI,

specifically focusing on the energy consumption required for model training and inference and the

resulting carbon footprint and electronic waste. For example, students could calculate and compare

the estimated carbon dioxide emissions generated by training a large language model versus the

energy used by a local, optimized model running on an edge device, and propose a sustainable AI

strategy to reduce the overall impact.

Students are not expected to conduct complex, full life cycle assessments for computing hardware.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

182© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-AIN-10: Promote safeguards in AI systems that protect human well-being, privacy, and ensure
meaningful human involvement in decision-making.

Boundary
Statement(s)

Students should be able to analyze and articulate the need for safeguards in AI systems, including

multi-agent systems, focusing on practical measures to protect privacy, ensure human well-being,

and maintain meaningful human involvement in critical decision-making processes. For example,

students could analyze a scenario where an AI is used for medical diagnosis and propose a human-

in-the-loop workflow where the AI provides a recommendation, but a qualified human doctor is

required to make the final, auditable diagnosis, thereby ensuring meaningful human involvement and

protecting patient well-being.

Students are not expected to develop formal methods for verifying AI safety.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 12. Design computational technologies that empower and inform users.

Disposition(s) Critical Thinking, Reflectiveness, Creativity

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

183© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-AIN-11: Analyze the potential biases and limitations of AI systems.

Boundary
Statement(s)

Students should be able to employ both qualitative and quantitative methods to identify and analyze

systemic issues in AI systems, moving beyond simple error identification to investigating how social,

cultural, and historical biases are encoded in the training data, model architecture, and application

design. Students should analyze AI systems they created themselves as well as AI systems created by

others. For example, students could perform an audited comparison of a facial recognition model

created by others versus a text classifier created by the student, using disaggregated metrics to show

how performance varies across different demographic groups and linking those performance gaps to

specific data collection limitations.

Students are not expected to develop novel bias detection algorithms, perform complex causal

inference to determine the root cause of systemic inequality, or access proprietary, non-public model

weights and data from systems created by industry.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 12. Design computational technologies that empower and inform users.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

184© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-AIN-12: Explore how AI tools shape user experiences for people with diverse backgrounds and
characteristics.

Boundary
Statement(s)

Students should be able to explore and articulate how AI tools shape user experiences differently

across diverse user characteristics and backgrounds (e.g., socioeconomic status, cultural background,

geographic region, language). For example, students could analyze how a voice assistant performs

differently for users with different accents or how a recommendation algorithm exposes users to

different content based on their demographic characteristics.

Students are not expected to design user experience studies for AI tools or implement adaptive

personalization systems.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Reflectiveness

S1-AIN-13: Use AI as a tool for software development of an AI agent.

Boundary
Statement(s)

Students should be able to strategically integrate AI-powered development tools to manage the

lifecycle of AI agent development, including using AI for code generation, debugging, testing, and

documentation. For example, students could use an AI coding assistant to help write a game-playing

agent, debug errors in the agent’s decision-making logic, and generate test cases to verify the agent’s

behavior.

Students are not expected to design or train their own AI-assisted development tools.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Resourcefulness, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

185© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-AIN-14: Debate trade-offs between respecting creators’ intellectual property rights and using their
works to train AI models.

Boundary
Statement(s)

Students should be able to analyze and debate the tension between respecting creators’ intellectual
property rights and the practice of using copyrighted works to train AI models. Students could
examine whether AI companies should obtain permission and provide compensation when training
models on copyrighted works (e.g., books, articles, artwork, code), considering arguments about fair
use, the transformative nature of AI-generated outputs, and whether scraping publicly accessible
content from the internet constitutes legitimate use or infringement. Students should consider the
economic impact on creators, the benefits of AI advancement to society, and the perspectives of
different perspectives from creators, AI developers, and the public.

Students are not expected to cite specific legislation or case law.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness

S1-AIN-15: Evaluate AI versus non-AI computational solutions for real-world problems.

Boundary
Statement(s)

Students should be able to analyze a real-world problem and systematically compare the trade-offs,
feasibility, and appropriateness of AI-based solutions versus non-AI computational solutions. For
example, students could evaluate whether to use a pre-trained image classification model (AI) to
identify defective parts using assembly line photos or use a traditional image processing algorithm
that checks for specific pixel color ranges or geometric shapes (non-AI). Students should consider
factors like data availability and interpretability, computational resources, and accuracy needed.

Students are not expected to implement AI or non-AI solutions for real-world problems. Students do
not need to consider financial factors.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

186© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-AIN-16: Evaluate the ethical implications of AI throughout history and into the future.

Boundary
Statement(s)

Students should be able to conduct a critical evaluation of AI ethics, moving beyond surface-level

concerns to analyzing how ethical considerations have evolved over time. For example, students

could compare the ethical concerns surrounding early conceptions of AI (e.g., Asimov’s Three Laws

of Robotics) and rule-based AI systems (e.g., concerns about programming errors and logic), with

the ethical implications of contemporary AI systems that focus on bias, fairness, and transparency.

Students should also evaluate ethical challenges that may emerge as AI capabilities advance, drawing

from futuristic depictions of AI in media or their own imaginations.

Students are not expected to conduct research on AI development trajectories or apply specific

ethical frameworks. Students are not expected to rigorously define consciousness or sentience in

discussions of future AI capabilities.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

187© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

Specialty II

S2-AIN-01: Investigate problems that can be addressed using unsupervised learning.

Boundary
Statement(s)

Students should be able to investigate and categorize the types of real-world problems that can

be effectively addressed using unsupervised learning approaches. Students should demonstrate

conceptual understanding of when and why to apply different types of models. Students should be

able to identify problem characteristics that make unsupervised learning appropriate (e.g., lack of

labeled data, need to discover hidden patterns, exploratory data analysis) and provide examples of

problem types (e.g., customer segmentation, anomaly detection, dimensionality reduction, pattern

discovery in large datasets).

Students are not expected to implement unsupervised learning algorithms or prove their

mathematical convergence properties.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Resourcefulness

S2-AIN-02: Create an application using complex supervised learning models.

Boundary
Statement(s)

Students should be able to select, implement, and evaluate supervised learning models and integrate

them into real-world applications. Students should demonstrate understanding of model evaluation

and feature selection for the application. For example, students could create a home price prediction

application, select relevant features from housing data (e.g., square footage, location, number of

bedrooms), train a supervised learning model, and evaluate its performance by testing predictions

against actual prices using appropriate metrics.

Students are not expected to design or implement deep learning models.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Persistence, Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

188© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-AIN-03: Optimize AI algorithms to improve performance.

Boundary
Statement(s)

Students should be able to optimize AI algorithms to improve their performance on a given task by

systematically adjusting parameters and evaluating the impact of changes. For example, students

could tune hyperparameters (e.g., learning rate, number of training epochs) or modify model

architecture (e.g., number of layers, activation functions) and measure how these adjustments affect

accuracy or other performance metrics.

Students are not expected to invent novel algorithms or develop new optimization techniques.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Disposition(s) Critical Thinking, Reflectiveness, Persistence

S2-AIN-04: Modify an AI algorithm to optimize its performance for a given problem.

Boundary
Statement(s)

Students should modify and tune the parameters and structure of an accessible AI algorithm and

model to optimize performance for a given problem, demonstrating an understanding of how internal

algorithm mechanics influence output. This goes beyond simply using pre-set tools to actively altering

the algorithm’s control flow or hyperparameters. For example, students might modify an algorithm

used in discriminative systems (e.g., changing the depth of a decision tree used for an image classifier)

or adjust the sampling parameters of a generative system. Students could work across different

problem domains, such as tuning weights for sentiment analysis, modifying neural network layers for

image recognition, altering minimax depth for game agents, adjusting k-values in recommendation

systems, or modifying PID controller parameters for simulated autonomous vehicles.

Students are not expected to implement algorithms from scratch, work with production-scale

systems, or optimize across all possible hyperparameters using advanced techniques (e.g., Bayesian

optimization, neural architecture search).

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Persistence, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

189© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-AIN-05: Transform and restructure data for AI analysis.

Boundary
Statement(s)

Students should be able to apply data transformation and restructuring techniques that prepare

data for AI algorithms, including feature scaling, handling categorical data, aggregating data, and

reshaping data. For example, students could take a raw dataset with mixed feature types and apply

normalization to numerical columns and one-hot encoding to categorical columns, explaining how

these transformations prepare the data for a specific algorithm (e.g., K-Nearest Neighbors classifier).

Students are not expected to implement dimensionality reduction techniques.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness, Persistence

S2-AIN-06: Evaluate metadata and data pipelines to support transparency in AI model deployment.

Boundary
Statement(s)

Students should be able to critically evaluate the entire data pipeline from acquisition through

cleaning for potential sources of bias, inaccuracy, and lack of transparency. Students should use this

analysis to justify or critique the selection of a specific AI model and its deployment context. For

example, students could analyze the metadata of an image dataset used to train a face recognition

model (e.g., date of collection, sensor type, demographic coverage), identify a lack of demographic

diversity, and articulate how this flaw necessitates either selecting a different model less sensitive to

demographic bias or changing the deployment plan (e.g., limiting its use to controlled environments).

Students are not expected to design and implement algorithmic fairness metrics.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Disposition(s) Critical Thinking, Reflectiveness, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

190© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-AIN-07: Propose a policy change that would promote transparency in AI applications.

Boundary
Statement(s)

Students should be able to articulate a well-reasoned, actionable, and specific policy

recommendation aimed at increasing transparency across the entire AI lifecycle, from raw data to

deployed impact, and justify how that policy balances competing values like innovation and privacy.

An example of this is drafting a “Model Card” or “Data Sheet” mandate for high-risk AI applications

(e.g., in hiring or criminal justice), requiring public disclosure of the training data sources, the specific

model chosen (e.g., random forest), and the results of a disparate impact analysis before deployment.

Students are not expected to draft policy documents, cite existing state or federal statutes, or

implement the technical infrastructure (e.g., secure data vaults) required to actually make sensitive

data accessible.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Disposition(s) Critical Thinking, Creativity

S2-AIN-08: Analyze how model optimization choices impact a model’s performance.

Boundary
Statement(s)

Students should be able to explain how different optimization choices (e.g., using gradient descent or

adding regularization) and accuracy measures (e.g., F1-score or mean absolute error) affect how an AI

model performs and how those choices can impact fairness and transparency. For example, students

could discuss how a loan approval model focused only on high recall might lead to more defaults in

certain groups, while one focused only on high precision might unfairly reject qualified applicants.

Students are not expected to write code or calculate specific metrics.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 6. Define computational problems.

Disposition(s) Reflectiveness, Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

191© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-AIN-09: Debate aspects of AI regulatory frameworks and legislation across countries.

Boundary
Statement(s)

Students should be able to analyze and contrast major AI regulatory frameworks from at least

two regions of the world (e.g., the European Union’s AI Act versus a US state or federal approach).

Students should understand the core philosophical approaches and practical impacts on key areas

like data sovereignty and governance. For example, students could compare how the EU’s focus on

regulating “high-risk” AI systems differs from a less restrictive regulatory environment, and debate the

resulting impact on innovation speed versus human protections in areas like facial recognition.

Students are not expected to read the text of legislation.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Disposition(s) Critical Thinking, Reflectiveness

S2-AIN-10: Demonstrate professional communication by adapting technical AI results for diverse
audiences.

Boundary
Statement(s)

Students should be able to move beyond simply stating technical findings to translating model

performance metrics (e.g., F1-score, precision, recall) and ethical risks (e.g., disparate impact, bias)

into language that is relevant and actionable for specific non-technical audiences. For example,

students could prepare a presentation on an AI-driven school admissions model where the executive

summary for the school board focuses on cost-savings and scalability, while the community group

briefing focuses on fairness metrics and due process for appeals.

Students are not expected to create publishable graphics or animated media or participate in real-

world communications campaigns.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Creativity, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

192© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-AIN-11: Use an AI-assisted development workflow to design, implement, and optimize an AI agent.

Boundary
Statement(s)

Students should be able to strategically establish and execute a complete AI agent development

workflow that incorporates AI tools at multiple stages, from initial prompt-based design to final

performance optimization. Students should view the AI assistant as a continuous collaborator. For

example, students could use a large language model to draft a project plan and pseudocode (design),

generate initial boilerplate code (implement), use an AI debugger to fix complex errors (implement/

optimize), and use an AI code analyzer to suggest refactoring for improved efficiency and readability

(optimize). This combined workflow is used to create the AI agent.

Students are not expected to build custom AI models for their workflow.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Creativity, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

193© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

Physical Computing

Specialty I

S1-PHY-01: Construct an electrical circuit to power and control physical computing devices, including
creating and interpreting schematic diagrams.

Boundary
Statement(s)

Students should be able to create and troubleshoot a simple electrical circuit that powers and

controls physical computing devices. They should create and interpret schematic diagrams. For

example, students could build a circuit with a microcontroller, resistor, and LED, use a multimeter to

check voltage and current, draw a corresponding schematic diagram, and troubleshoot if the LED

doesn’t light as expected by checking for loose connections or incorrect component orientation.

Students are not expected to design circuits with multiple integrated circuits or design and etch

custom printed circuit boards.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Persistence, Resourcefulness, Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

194© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-PHY-02: Integrate sensors, actuators, and peripherals with physical computing devices to extend their
functionality and gather real-world data for analysis and control.

Boundary
Statement(s)

Students should be able to select, connect, and program multiple sensors and actuators with a

microcontroller to build interactive systems. For example, students might integrate a light sensor

and a motor to create a system that automatically opens and closes a blind based on ambient light

level. Students would program the system to read sensor data, process it, and control the actuator

accordingly.

Students are not expected to integrate a large number of components, work with industrial-grade

sensors or actuators that require complex wiring or power considerations, or build systems for

mission-critical applications.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Resourcefulness, Persistence, Creativity

S1-PHY-03: Implement software to control physical devices.

Boundary
Statement(s)

Students should write and deploy code that directly interacts with physical hardware components

(e.g., sensors, actuators, microcontrollers) to create a functional physical system. For example,

students might write a program in an environment like the Arduino IDE to read data from a motion

sensor and trigger a servo motor to open a small door.

Students are not expected to design or fabricate hardware components or work at a low-level

machine code level.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Creativity, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

195© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-PHY-04: Employ IoT devices to collect sensor data and transmit it locally using device-to-device or
device-to-gateway communication.

Boundary
Statement(s)

Students should be able to configure and program a physical computing device to act as an IoT

endpoint. They should collect sensor data and transmit it to another device or a local hub (gateway).

Students should focus on data collection and local transmission rather than cloud-based systems. For

example, students might use a microcontroller with a Wi-Fi module to collect temperature data from

a sensor and send it to a local computer running a server, or directly to another microcontroller.

Students are not expected to work with cloud-based IoT platforms or manage complex networking

protocols. Students do not need to implement security measures beyond basic passwords or keys.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Resourcefulness, Persistence

S1-PHY-05: Implement IoT communication by connecting physical devices with protocols, applying
security practices.

Boundary
Statement(s)

Students should be able to configure and program physical devices to communicate with other

devices using established protocols (e.g., serial, Bluetooth, Wi-Fi). They should understand

fundamental concepts of how data is sent and received over networks. For example, students

might build a system where a microcontroller uses a Bluetooth module to send sensor data to a

smartphone, or uses Wi-Fi to send data to a local server. They should implement security practices

(e.g., using passwords or keys to protect against unauthorized access).

Students are not expected to design custom communication protocols or work with advanced

networking concepts.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

196© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-PHY-06: Evaluate social, technical, and sociotechnical impacts of physical computing projects to
assess viability.

Boundary
Statement(s)

Students should analyze physical computing projects from multiple perspectives to assess feasibility

and impact before significant development begins. They should evaluate technical dimensions

(e.g., power consumption, sensor accuracy, hardware capabilities), social dimensions (e.g., user

accessibility, community benefits, equity considerations), and sociotechnical dimensions (e.g., how

the technology changes human behavior, impacts social structures, or affects policies). For example,

when evaluating a smart irrigation system design, students might assess whether sensors can

accurately measure soil moisture in different conditions, whether the system is accessible to users

with varying technical expertise, and how automated watering might change community water-use

practices.

Students are not expected to develop project budgets, calculate return on investment, or produce

compliance or other documentation that would be required in a professional business or engineering

setting.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Reflectiveness, Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

197© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-PHY-07: Collaborate using the engineering design process to develop and refine physical computing
solutions for diverse users.

Boundary
Statement(s)

Students should be able to work effectively in teams to design, build, and test physical computing

solutions using a structured engineering design process. Students should demonstrate an awareness of

the needs of diverse users and address them in the design process. Students should provide and receive

constructive feedback on designs. For example, a group of students might design a smart doorbell

for a community center, considering different user needs (e.g., individuals with visual or hearing

impairments, those who speak different languages), and iterate on their design based on user feedback.

Students are not expected to conduct formal user studies or implement solutions that meet

professional accessibility standards.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Reflectiveness, Sense of Belonging in CS

S1-PHY-08: Evaluate the security implications of physical computing projects, including data privacy,
unauthorized access, and potential vulnerabilities, and implement measures to mitigate risks.

Boundary
Statement(s)

Students should be able to identify, analyze, and address security threats and vulnerabilities specific

to physical computing devices. They should demonstrate a foundational understanding of security

principles and apply them in the context of their projects. Students should understand how physical

access to a device can lead to security breaches and how to protect against them. For example,

students might create a smart lock and implement measures like strong authentication (e.g., using a

keypad and unique PIN), data encryption for communication between the device and a server, and

physical safeguards to prevent tampering.

Students are not expected to perform penetration testing or conduct systematic security audits.

Pillar(s) and
Practice(s)

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

198© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-PHY-09: Collaborate using project management methodologies to design, develop, and test physical
computing projects.

Boundary
Statement(s)

Students should be able to apply project management methodologies (e.g., agile frameworks)
to collaboratively manage a physical computing project from conception through delivery. They
should share responsibilities, resolve conflicts equitably, and communicate progress and outcomes.
For example, students might use a kanban board to track tasks (e.g., prototyping, circuit design,
programming the microcontroller, user testing) and hold regular stand-up meetings to discuss
progress and resolve issues.

Students are not expected to use professional project management software or lead projects with
multiple teams and external stakeholders.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Computational Thinking: 9. Test and refine computational artifacts.

Disposition(s) Persistence, Reflectiveness, Resourcefulness

Specialty II

S2-PHY-01: Develop an electromechanical system using CAD tools for design and testing, considering
power requirements, motor types, and control algorithms.

Boundary
Statement(s)

Students should be able to design and build a system that integrates mechanical components (e.g.,
motors, actuators, structural elements) with electrical components. They should use CAD software
to model and refine their designs. For example, students could design a robotic arm that picks up and
moves objects, using CAD software to design and simulate the arm’s mechanical structure before
building it.

Students are not expected to perform stress analysis, thermal simulations, or other advanced
engineering analyses within CAD software. Students do not need to design or machine custom parts.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Creativity, Resourcefulness, Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

199© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-PHY-02: Evaluate sensor types and implement closed-loop feedback control to maintain a desired
outcome.

Boundary
Statement(s)

Students should apply quantitative analysis to evaluate sensor characteristics (e.g., accuracy,

precision, sensitivity, response time, range) and select appropriate sensors for specific applications.

They should design the logic for closed-loop control systems that automatically adjust outputs based

on sensor inputs. For example, students might design a heating, ventilation, and air conditioning

(HVAC) control system prototype for temperature and humidity regulation, evaluating sensors for

their specifications and programming a microcontroller to control fan and heater/cooler actuators to

maintain target ranges.

Students are not expected to design or fabricate custom circuit boards for sensor signal conditioning

(e.g., designing an analog filter circuit from scratch) or perform the calculus necessary to model the

full dynamics of a complex, higher-order control system (e.g., using Laplace transforms to analyze

system stability).

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Resourcefulness

S2-PHY-03: Develop an application that extends functionality and user engagement with physical devices.

Boundary
Statement(s)

Students should be able to design and program a full-stack application that includes both a front-end

user interface and a back-end program that interacts with and controls a physical computing device.

For example, students could develop a mobile app that allows a user to remotely control a physical

robot, adjust its speed, and receive real-time sensor data from the device.

Students are not expected to use low-level programming languages to manage hardware registers or

design and fabricate custom circuit boards.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Persistence, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

200© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-PHY-04: Employ IoT devices to collect and transmit data, enabling remote monitoring and control of
physical systems.

Boundary
Statement(s)

Students should be able to configure a physical computing device to collect sensor data and transmit

it to a remote location (e.g., a cloud service, a web server) for visualization and control. Students

should use existing IoT services and libraries to connect their devices to the internet. Students should

be able to send commands from the remote interface back to the device to control an actuator.

For example, they might build a weather station that uses temperature and humidity sensors to

collect data and transmit it to a web page viewable from a remote location, with the ability to send

commands back to control an LED or fan.

Students are not expected to manage cloud infrastructure or build complete data pipelines.

Pillar(s) and
Practice(s)

Computational Thinking: 9. Test and refine computational artifacts.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

201© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-PHY-05: Develop an embedded network, evaluating trade-offs among network protocols, security
measures, and scalability.

Boundary
Statement(s)

Students should be able to design, build, and evaluate a multi-device physical computing network

that enables communication, data sharing, and remote management. They should focus on

fundamental networking principles within a physical computing context. Students should select

an appropriate network topology and protocol (e.g., Bluetooth, Wi-Fi, LoRa) based on project

requirements (e.g., range, power consumption, data rate). They should implement security practices

(e.g., encryption, password protection) and consider how to scale their network to include more

devices. For example, students could design a system with multiple environmental sensors (e.g.,

temperature, humidity) distributed across a room, all communicating with a central hub that logs data

and can be accessed remotely via a web server.

Students are not expected to configure routing protocols, work with professional networking

hardware, or implement custom protocols.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 4. Manage computing projects.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

202© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-PHY-06: Analyze how physical computing technologies could shape social processes, communities,
power, and equity in global society.

Boundary
Statement(s)

Students should be able to identify and critically evaluate the multifaceted impacts of physical

computing technologies on a global scale. Students should go beyond listing pros and cons to

examine the nuanced ways these technologies can reinforce or challenge existing social structures,

power dynamics, and inequities. For example, students could analyze how the deployment of

agricultural drones and sensors in developing nations affects local economies and community labor

practices, considering both the potential for increased crop yield and the risk of job displacement for

farm workers.

Students are not expected to conduct primary sociological research or develop sophisticated

economic models to quantify these impacts.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational technologies.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

203© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-PHY-07: Use a source control system to coordinate development in physical computing projects.

Boundary
Statement(s)

Students should be able to use a source control system (e.g., Git) to manage and coordinate

code development when collaborating on physical computing projects. Students should create

branches for different features or components, commit changes with descriptive messages, merge

contributions from team members, and resolve basic merge conflicts. Students should recognize

and value the contributions of diverse team members, understanding that different perspectives

and approaches strengthen the project. Students should understand how source control enables

collaborative work by tracking who made what changes and allowing team members to work on

different parts of the project simultaneously. For example, a team building a weather station could

use Git to manage separate branches for sensor data collection code and display control code, with

each team member committing their work and the team merging contributions into a main branch to

create the integrated system.

Students are not expected to set up and administer repository servers or hosting platforms. Students

are not expected to resolve complex merge conflicts involving extensive code changes across many

files. Students are not expected to use advanced features like rebasing, cherry-picking, or managing

complex branching strategies.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Disposition(s) Reflectiveness, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

204© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

Data Science

Specialty I

S1-DSC-01: Apply exploratory data analysis techniques to non-hierarchical data.

Boundary
Statement(s)

Students should be able to apply exploratory data analysis (EDA) techniques to non-hierarchical

quantitative data (e.g., tabular data stored in CSV files or tab-limited files). Students should use

computational tools to calculate summary statistics (e.g., measures of center, spread, and shape),

create visualizations, and identify key characteristics of the data (e.g., shape of distributions, outliers,

and associations between variables). For example, students could use a programming environment

with a data analysis library (e.g., Python’s Pandas) to load a CSV file, then use functions to calculate

the mean, median, and standard deviation of values for different variables. Students could then

generate a histogram to visualize the data distribution for each variable and a scatter plot to examine

the relationship between two variables.

Students are not expected to analyze or manipulate hierarchical data formats like JSON or XML.

Students are also not expected to perform statistical analysis beyond generating summary statistics.

Students are not expected to account for nesting or clustering of data when generating summary

statistics.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Creativity

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

205© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-DSC-02: Discuss the metadata when using data collected by others.

Boundary
Statement(s)

Students should be able to identify, interpret, and discuss the metadata associated with a dataset

they did not collect themselves. This involves examining and explaining what the metadata tells them

about the data’s origin, collection methods, variables, and potential limitations before beginning an

analysis. For example, when given a dataset, students should analyze a readme file or data dictionary

to understand where the data came from, when it was last updated, what each column or variable

represents, and what units of measurement were used. They should then use this information to

inform their analysis, discuss potential sources of bias in the data and other factors that will influence

data interpretation.

Students are not expected to work with datasets that lack any form of metadata. Students are also

not expected to perform quality assurance on the metadata and data (e.g., to compare the metadata

and data to ensure they align).

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational technologies.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

206© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-DSC-03: Write code to manipulate and transform data to prepare for analysis.

Boundary
Statement(s)

Students should be able to write code to perform common data manipulation and transformation

tasks (e.g., filtering, grouping, summarizing, calculating new variables, restructuring, merging

datasets) to prepare a dataset for a specific analysis. For example, students could filter a dataset to

include only rows that meet specific criteria (e.g., sales from a particular region), group data by a

certain category (e.g., sales by product type), and then summarize those groups (e.g., calculate the

total sales for each product type). They should also be able to calculate new variables (e.g., product

prices converted to a different currency), restructure a dataset (e.g., from a long format to a wide

format), and merge two or more datasets based on a common key. Students should work with

datasets large enough to require processing with computational tools. They should use existing

libraries (e.g., Python’s pandas, R’s dplyr) designed for these purposes.

Students are not expected to build their own tools for data manipulation. Students should not work

with datasets so large that standard computational tools run slowly or run out of memory. Students

are not expected to optimize code for performance with very large datasets.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Persistence, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

207© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-DSC-04: Apply an appropriate analytic or visualization technique for categorical and quantitative data.

Boundary
Statement(s)

Students should be able to select and apply appropriate computational methods for analyzing and

visualizing categorical data (e.g., bar charts, mosaic plots, frequency tables) and quantitative data

(e.g., histograms, scatter plots, box plots, summary statistics). Students should understand how the

data type influences the choice of analytic and visualization techniques. For example, students could

use computational tools to create a bar chart showing the distribution of car types in a dataset and a

scatter plot examining the relationship between engine size and fuel efficiency.

Students are not expected to perform inferential statistical tests (e.g., chi-squared tests, t-tests,

ANOVA) or statistical modeling techniques that require understanding of probability distributions and

statistical significance (e.g., linear regression, logistic regression). Students do not need to work with

multidimensional data requiring techniques like principal component analysis or advanced machine

learning models.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Reflectiveness, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

208© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-DSC-05: Examine missing data and its impact on data analysis.

Boundary
Statement(s)

Students should be able to examine datasets with missing values to understand the nature and extent

of the missing data (e.g., identifying which variables have missing values, how much data is missing,

whether there are patterns in what is missing). Students should evaluate how missing data affects

different analytical approaches, recognizing that some methods require complete data while others

can handle missing values. For example, students might explore a housing dataset where income data

is partially missing and observe that some visualization techniques (e.g., scatter plots) automatically

exclude incomplete cases while summary statistics can be calculated on available data. Students

should understand that decisions about handling missing data (e.g., removing incomplete cases,

using mean imputation) can affect results and potentially introduce bias. Students should develop

awareness of missing data as an important data quality issue that requires thoughtful consideration.

Students are not expected to formally classify missing data mechanisms (missing completely at

random, missing at random, missing not at random) using statistical tests, though discussing these

concepts is appropriate. Students are not expected to implement advanced imputation techniques

(e.g., k-nearest neighbors imputation, multiple imputation by chained equations) or to perform formal

statistical comparisons of model performance with different missing data treatments.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

209© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-DSC-06: Analyze structured categorical and/or quantitative datasets, using computational tools and
libraries.

Boundary
Statement(s)

Students should be able to use computational tools and libraries to perform exploratory data analysis

on structured datasets. They should write and execute code to clean, transform, and aggregate

data, and use visualization libraries to create charts and graphs that reveal trends, patterns, and

relationships within the data. For example, students could use a library (e.g., Pandas in Python) to

analyze a dataset of global climate information, computing and visualizing average temperature

changes over a decade for different continents, or grouping temperature data by month to calculate

average monthly temperatures.

Students are not expected to work with datasets so large that standard tools run slowly or run out of

memory, use distributed computing frameworks (e.g., Spark or Hadoop), or build data analysis tools

from scratch.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Critical Thinking, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

210© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-DSC-07: Interpret the results of data analyses to explain patterns, anomalies, and trends, and connect
them back to the original problem or research question.

Boundary
Statement(s)

Students should be able to examine existing data analyses (e.g., visualizations, summary statistics,

published findings) and interpret what the results mean in relation to the original research question

or problem. Students should identify key patterns, trends, and anomalies in the data and explain how

these findings address the research question. Students should discuss limitations of the analysis and

consider alternative explanations for the observed patterns. For example, students might examine

a visualization showing declining bee populations over time, identify the downward trend, connect

this pattern to a research question about pollinator health, and discuss possible explanations (e.g.,

pesticide use, habitat loss) while noting limitations such as the time period covered or other factors

not measured in the dataset.

Students are not expected to perform the statistical calculations or create the visualizations

themselves for this standard. Students are not expected to conduct formal hypothesis testing,

calculate inferential statistics, or replicate the original analysis to validate their interpretations.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

211© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-DSC-08: Explain how dataset size affects model stability and performance.

Boundary
Statement(s)

Students should be able to explore how adding or removing data points (rows) affects model behavior
when the model is re-run. Students should recognize that small datasets are more sensitive to changes
than large datasets - adding or removing even a small number of rows from a small dataset can cause
substantial changes in model outputs, while adding or removing the same number of rows from a
large dataset has minimal impact. Students should understand that larger datasets generally produce
more stable and reliable models. Students should observe and describe the practical effects of dataset
size on model behavior. For example, students might start with a model trained on 20 house sales,
observe how predictions can change dramatically when adding or removing 10 sales, then compare
this to adding or removing 10 sales from a dataset of 1,000 sales where predictions barely change.

Students are not expected to calculate formal statistical measures of model stability. Students are not
expected to understand the mathematical relationship between sample size and variance.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Reflectiveness

S1-DSC-09: Assess the appropriateness of predictive models for the specific problem being addressed.

Boundary
Statement(s)

Students should be able to evaluate the suitability of a predictive model for a given problem at a
conceptual level. Students should consider the type of data, the nature of the outcome (e.g., categorical
vs. continuous), and the potential real-world impact of the model’s performance. For example, students
could be given a problem to predict whether a customer will click on an ad. They should explain why a
logistic regression model is more appropriate than a linear regression model for this specific problem,
which requires predicting a categorical outcome (yes/no) rather than a continuous numerical value.

Students are not expected to build or assess deep learning models. Students are not required to
statistically evaluate different models to determine which model has the best fit.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

212© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-DSC-10: Create a visualization that clearly communicates key findings to diverse audiences, selecting
appropriate chart types and formatting.

Boundary
Statement(s)

Students should be able to create data visualizations that effectively communicate specific findings

to different audiences. Students should demonstrate understanding of how different visual elements

impact viewers’ comprehension and interpretation of the data and choose design elements

intentionally. Students should select appropriate chart types (e.g., line graphs for trends over time,

bar charts for comparing categories, or scatter plots for relationships) and apply formatting to

enhance clarity and readability (e.g., using clear titles and labels and choosing meaningful colors). For

example, students could create a bar chart to visualize the average height of students in each grade

level for a general audience. Students could intentionally use color to visually distinguish between

elementary school students, middle school students, and high school students. For a more research-

oriented or data-savvy audience, students could then add error bars to the bar chart or create a

density plot to highlight the distribution of height in each grade level and how much the distributions

overlap across grade levels. Students should focus on designing intentionally and developing a basic

understanding of how different visual elements impact a viewer’s comprehension and interpretation

of the data.

Students are not expected to create complex data visualizations or interactive dashboards. Students

are not expected to user-test and collect feedback on their visualizations.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

213© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-DSC-11: Demonstrate how common graphical conventions are used in data visualizations and how
breaking these conventions can lead to misleading interpretations.

Boundary
Statement(s)

Students should be able to demonstrate an understanding of established graphical conventions in

data visualization and explain how intentionally or unintentionally deviating from these conventions

can misrepresent data and mislead an audience. This includes conventions such as a y-axis that starts

with smaller values at the bottom and higher values at the top of the chart, how specific colors are

associated with specific meanings (e.g., red is associated with warnings in American culture), and

the appropriate use of chart types for different data types. For example, students could be given a

visualization that inverts the y-axis so smaller values are at the top and larger values at the bottom.

They would explain how the convention aligns with our natural sense of larger vs. smaller and how

inverting the y-axis makes the data more difficult to interpret correctly. Students could then create a

corrected version of the visualization where the y-axis is oriented as expected.

Students are not expected to analyze or correct 3D or interactive data visualizations, data

visualizations that use logarithmic scales, or other more advanced types of data visualizations (e.g.,

network graphs, radar graphs, sankey diagrams).

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

214© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-DSC-12: Apply ethical principles to data collection, analysis, and communication to promote privacy,
transparency, and accountability.

Boundary
Statement(s)

Students should be able to apply ethical principles in the context of data science projects, going

beyond simple awareness of privacy and bias to promote transparency and accountability. For

example, in a project involving a social media dataset, students could develop a plan for data

anonymization to protect user privacy and draft a public-facing statement explaining what data was

used, how it was analyzed, and what conclusions were drawn, thereby promoting transparency and

accountability.

Students are not expected to read or interpret data privacy laws or use statistical techniques to

quantify bias or representativeness.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational technologies.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking

S1-DSC-13: Assess how data collection and use may impact marginalized and underrepresented groups.

Boundary
Statement(s)

Students should be able to analyze and articulate the potential impacts of data collection and use

on different communities, particularly those who are marginalized or underrepresented. This goes

beyond a general discussion of bias to a specific examination of how data choices can exacerbate or

mitigate existing social inequalities. For example, students could analyze a facial recognition dataset

to assess its representation of different skin tones and genders and propose ways to collect a more

inclusive and equitable dataset.

Students are not expected to use statistical tests to quantify demographic representation or develop

bias mitigation algorithms.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational technologies.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

215© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-DSC-14: Communicate results of data analyses in formats appropriate for audiences with different
backgrounds and perspectives.

Boundary
Statement(s)

Students should be able to translate data analysis results into clear narratives for different audiences,

using appropriate communication formats. This goes beyond simple charts and graphs. Students

should tell the story of their data by articulating the purpose, methods, findings, and ethical

considerations of their analysis. For example, students could create a presentation for a public

audience explaining findings from a community health data analysis and write a technical report for

other data scientists detailing the study design, data collection methods, and statistical models used

in the analysis.

Students are not expected to create data visualizations using professional tools (e.g., Tableau, Power

BI) without structured guidance. Students are not expected to be polished public speakers, but they

should be able to convey their findings clearly and confidently.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

216© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

Specialty II

S2-DSC-01: Select appropriate data to collect for a data science project based on available tools, skills,
and project goals.

Boundary
Statement(s)

Students should be able to analyze a data science project’s objectives and make informed decisions

about what kind of data to collect. This involves evaluating project goals to determine what questions

need to be answered. Students should consider available tools (e.g., Python libraries for web

scraping, APIs, or sensor hardware) and their own skills to choose a feasible data collection strategy.

For example, if a project’s goal is to analyze local air quality, students should consider whether to use

a public API, purchase and use a physical sensor, or use an existing government dataset, weighing

the pros and cons of each method against their resources and abilities and the nature of the research

question. Students should focus on the decision-making process and justifying their choice of data

source and collection method.

Students are not expected to build data collection tools from scratch (e.g., custom web scrapers).

Students should not focus on technical implementation. Students are not required to work with

large data sets that require memory or processing power beyond what is available on their personal

devices. Students are not required to work with data from multiple, disparate sources.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Resourcefulness, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

217© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-DSC-02: Apply exploratory data analysis techniques to hierarchical structured data sources.

Boundary
Statement(s)

Students should be able to apply exploratory data analysis techniques to hierarchical structured data
sources, moving beyond processing tabular data. This involves navigating nested data, extracting
relevant information from different levels of the hierarchy, and applying summary statistics and
visualizations to this extracted data. For example, students could be given a JSON file containing
nested information about an API response, such as a list of songs, each with a nested object for
the artist, including their name, genre, and a list of other albums. Students could parse this data
to calculate the average length of songs for a specific genre or to create a bar chart showing the
number of songs per artist.

Students are not expected to handle deeply nested or graph-structured data.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking, Resourcefulness

S2-DSC-03: Document the origin, structure, and preparation of datasets to support clarity and
reproducibility.

Boundary
Statement(s)

Students should be able to create clear and detailed documentation for a dataset they have
prepared for analysis. This goes beyond simply using metadata to creating a comprehensive record
of the data’s entire lifecycle, from its source to its final, prepared state to ensure that their work is
reproducible. Students should document the data’s origin, data collection methods, and all the steps
taken to clean, transform, or organize it for analysis. For example, students could write a report
detailing that their dataset came from a specific government website’s API, was collected on a certain
date, and was then cleaned by removing missing rows and normalizing a date column into a standard
format, providing the code snippets used for each step.

Students are not expected to use version control systems (e.g., Git) to track every change.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Persistence, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

218© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-DSC-04: Write code to collect and integrate data from multiple sources.

Boundary
Statement(s)

Students should be able to write code to collect data from diverse sources (e.g., APIs, web scraping,

databases) and integrate datasets that were not originally designed to be combined. Students should

identify or create common keys to enable merging (e.g., matching records based on ticker symbols,

dates, or other shared attributes) and verify that the merge was performed correctly by checking for

expected row counts and examining merged records. Students should then transform the combined

data using data moves (e.g., filtering, grouping, summarizing, calculating new variables, restructuring)

to answer more complex and original questions that cannot be answered with a single, pre-cleaned

dataset. For example, students might collect real-time stock market data from an API, integrate it with

a historical dataset from a file, create a common key based on stock ticker and date, verify the merge,

and then group by industry sector and calculate summary statistics to analyze trends and make

predictions.

Students are not expected to perform complex data matching algorithms (e.g., fuzzy matching

for approximate string matches, probabilistic record linkage). Students are not expected to handle

unstructured data (e.g., images, audio files, raw text) that requires parsing or machine learning

techniques. Students do not need to write their own API clients or web scrapers from scratch - they

may use existing libraries for data collection.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Persistence, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

219© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-DSC-05: Apply models to explain relationships, make predictions, and evaluate the influence of
different variables.

Boundary
Statement(s)

Students should be able to create and apply simple computational models (e.g., linear regression,

decision trees, or basic simulations) to make predictions and explain relationships within a dataset.

Students should be able to evaluate how different input variables influence the model’s output. For

example, students could build a simple linear regression model to predict a runners’ race times based

on factors like training hours and diet and use the model’s output to explain which factors have the

most significant influence on performance. Students could also use a decision tree to classify an

email as spam or not spam and explain the sequence of decisions the model makes to arrive at its

conclusion.

Students are not expected to implement these model algorithms from scratch or to understand the

underlying mathematical theory in depth. Students are not expected to work with advanced machine

learning techniques (e.g., neural networks, ensemble methods, deep learning).

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Critical Thinking, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

220© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-DSC-06: Apply strategies for handling missing data while considering the effects on analysis results.

Boundary
Statement(s)

Students should be able to identify missing data in a dataset (e.g., empty cells, null values,

placeholder values like “NA”), select and implement an appropriate strategy for handling it using

code. Common strategies include removing rows or columns with missing data, imputing missing

values (e.g., using mean, median, or a specified value), or retaining missing values and excluding them

from specific calculations. Students should consider how their chosen approach affects analysis

results when selecting and implementing a strategy. Students should make informed decisions

about handling missing data based on observed effects on their analysis. For example, students

might observe that removing all rows with any missing values dramatically reduces dataset size and

then try mean imputation instead, comparing how the two approaches affect summary statistics or

visualizations to inform their choice of which strategy to use.

Students are not expected to implement advanced imputation algorithms (e.g., k-nearest neighbors

imputation, multiple imputation). Students are not expected to use statistical tests to assess the

quality of different missing data strategies.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Reflectiveness, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

221© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-DSC-07: Analyze unstructured, mixed data type, or high-dimensional datasets using computational
tools and libraries.

Boundary
Statement(s)

Students should be able to analyze and derive insights from unstructured data (e.g., text documents)

or high-dimensional data where the number of features is very large (e.g., image data where each

pixel is a feature, or sensor data that is sampled many times per second). Students should use

appropriate computational libraries and techniques to process, clean, and analyze these complex

data formats. For example, students could be given a collection of text documents and use a

library to perform a simple analysis (e.g., word frequency counting) to find key themes. For a high-

dimensional dataset, students could apply a dimensionality reduction technique to visualize or

analyze the data more effectively. Students should demonstrate fundamental skills for handling data

sets that are common in data science but not easily managed by traditional spreadsheet software.

Students are not expected to build models for complex tasks (e.g., natural language processing,

image recognition, or complex signal processing).

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

222© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-DSC-08: Evaluate the performance of models using established metrics.

Boundary
Statement(s)

Students should be able to use computational tools and established metrics to evaluate and compare

the performance of different models. Students should assess a model’s fit by using metrics such as

accuracy or precision for classification models, or mean squared error or R-squared for regression

models. Students should also assess computational efficiency by measuring how long it takes to train

or execute a model. Students should use existing library functions to generate evaluation metrics

and use those results to make informed judgments about model quality, considering trade-offs

between speed and accuracy. For example, after building a model to predict house prices, students

could compare its performance to another model with more predictor variables by calculating the

R-squared value for each. Students could then explain which model is a better fit for the data and

discuss if the inclusion of more variables is worth the extra resources needed to collect additional

data.

Students are not expected to implement evaluation metrics from scratch or to understand the

mathematical derivations of metrics. Students are not expected to perform theoretical algorithmic

analysis (e.g., Big O notation) to assess computational complexity.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Critical Thinking, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

223© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-DSC-09: Explain the trade-off between interpretability, accuracy, and generalizability as it relates to
model complexity.

Boundary
Statement(s)

Students should be able to explain how choices in model complexity create trade-offs between

interpretability, accuracy, and generalizability. A more complex model may be more accurate on

training data but is often more difficult to understand and interpret. Additionally, complex models

risk overfitting—learning the training data too well, including noise and outliers—which reduces

their ability to generalize to new, unseen data. Students should be able to articulate why a simpler

model that is less accurate but highly interpretable may be more suitable for certain applications.

For example, students could build two models to predict whether a student will pass or fail a

course: a simple logistic regression model that uses only study hours and attendance as features,

and a complex neural network that uses dozens of features. The logistic regression might achieve

80% accuracy and provide a clear, interpretable rule (e.g., “students who study more than 10 hours

per week and attend at least 80% of classes are likely to pass”), while the neural network might

achieve 85% accuracy but function as a “black box” where teachers cannot understand why specific

predictions are made. For advising students, the interpretable model may be more valuable despite

lower accuracy. Students should focus on conceptual understanding of these trade-offs and their

real-world implications.

Students are not expected to build or train machine learning models from scratch. Students are not

expected to understand or derive the mathematical theory behind why these trade-offs exist.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

224© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-DSC-10: Analyze how adding or removing variables affects model behavior and performance.

Boundary
Statement(s)

Students should be able to systematically add, remove, or modify variables (features) in a dataset and

analyze how these changes impact model predictions or performance when the model is re-run.

Students should understand that adding correlated variables (e.g., number of bedrooms and square

footage) can affect how the model uses each variable and may change which variables appear most

important. Students should explore how different combinations of variables affect model accuracy

or error. For example, students might start with a model predicting house prices based on square

footage alone, then add variables like years since remodel or median neighborhood price to see how

this affects the model’s accuracy or changes the relative importance of square footage.

Students are not expected to calculate variance inflation factors or other formal measures of

multicollinearity. Students do not need to understand the underlying mathematical reasons for how

correlated variables affect model coefficients.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

225© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-DSC-11: Create a visualization that accurately represents data and avoid misleading design choices.

Boundary
Statement(s)

Students should be able to create data visualizations while making deliberate design choices to avoid

common pitfalls that can mislead viewers. Students should use appropriate axis ranges, maintain

consistent scales, select chart types that match the data and message, and avoid visual distortions.

Students should refine their visualizations by checking that the visual representation accurately

reflects the underlying data. Students should also consider accessibility (e.g., using colorblind-

friendly palettes, providing text alternatives). For example, students creating bar charts to visualize

SAT scores (200-800 range) and ACT scores (1-36 range) should recognize that using the same axis

scale (e.g., 0-800) for both tests would compress ACT score variation and make differences appear

negligible, while using appropriate scales for each test (200-800 for SAT, 1-36 for ACT) accurately

represents the variation within each test.

Students are not expected to conduct formal user testing or collect empirical feedback on

visualization effectiveness. Students are not expected to create interactive dashboards or use

advanced visualization libraries. Students are not expected to master all accessibility standards but

should demonstrate awareness of basic considerations.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

226© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-DSC-12: Critique a data visualization for misleading elements and their role in spreading
misinformation.

Boundary
Statement(s)

Students should be able to analyze a data visualization and accompanying narrative from public

sources (e.g., news articles, social media posts, advertisements, political campaigns) to identify

misleading or deceptive elements. Students should explain how specific design choices (e.g.,

truncated or flipped axes, cherry-picked data ranges, counterintuitive color palettes) can distort

viewers’ understanding. Students should discuss how misleading visualizations contribute to

spreading misinformation or disinformation. Students should identify misleading elements and

understand their potential impact. For example, students might analyze a social media post showing

a dramatic-looking trend line that uses a truncated y-axis and a selective time range, explain how

these choices exaggerate the trend, identify what narrative the visualization promotes, and discuss

potential real-world consequences of its spread.

Students are not expected to verify data authenticity or trace the original source of visualizations.

Students are not expected to determine the intent behind misleading visualizations (whether

deliberate deception or honest mistake).

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

227© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-DSC-13: Apply ethical, legal, and social considerations when working with large-scale datasets,
predictive models, and emerging technologies.

Boundary
Statement(s)

Students should be able to analyze the ethical, legal, and social implications of data science projects,

particularly those that involve large datasets and predictive models, and apply principles of fairness,

accountability, and transparency in their own work. This goes beyond identifying bias to actively

considering how decisions at each stage—from data collection through model deployment—can

cause harm and taking steps to prevent it. For example, when building a predictive model, students

should identify potential sources of bias in the data, discuss the societal consequences of the model’s

predictions, and propose methods for ensuring that the model’s decisions are fair and transparent.

Students are not expected to read or interpret specific data privacy laws and regulations (e.g., CCPA,

GDPR). Students are not expected to use mathematical techniques to measure fairness or to conduct

statistical tests to validate model performance.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational technologies.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

228© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-DSC-14: Communicate technical results for diverse stakeholders in written reports, presentations, and
interpersonal communication.

Boundary
Statement(s)

Students should be able to translate data analyses into clear, actionable insights tailored for different

audiences with varying levels of technical expertise. This goes beyond simply presenting findings to

strategically crafting a message that resonates with the audience’s interests and needs. For example,

students could create a presentation for a city council, emphasizing the policy implications of a traffic

data analysis, while simultaneously preparing a detailed technical report and code library so other

scientists can reproduce the results.

Students are not expected to be polished public speakers or to create publication-ready infographics

with custom illustrations.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Reflectiveness, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

229© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-DSC-15: Evaluate protective measures in data collection, usage, and governance for privacy, security,
and fairness.

Boundary
Statement(s)

Students should be able to analyze and evaluate protective measures used in data collection,

usage, and governance, including privacy safeguards, security protocols, consent mechanisms, and

bias prevention strategies. This goes beyond simply identifying these measures to assessing their

effectiveness in specific contexts and understanding their interconnectedness. For example, students

could evaluate a mobile application’s data practices by analyzing its privacy policy and requested

permissions, identifying potential privacy risks (e.g., unnecessary location tracking) and proposing

alternative approaches that would better protect user privacy and prevent bias.

Students are not expected to implement cryptographic security protocols (e.g., encryption

algorithms) or to develop and deploy consent management systems (e.g., software that tracks user

consent choices, enforces data usage permissions, and generates compliance audit trails).

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational technologies.

Disposition(s) Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

230© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

Game Development

Specialty I

S1-GMD-01: Analyze the fundamental components of games, including players, rules, actions, and
outcomes.

Boundary
Statement(s)

Students should identify and document the core components of simple games, including player roles,

available actions, game rules that govern play, win/loss conditions, and how game state changes

based on player actions. Students should represent these components using appropriate models

(e.g., state diagrams, flowcharts, rule tables). For example, students analyzing a simple card game

could document the initial setup, legal moves on each turn, how card plays affect game state, and the

conditions that end the game.

Students are not expected to analyze complex games with extensive rule sets, probabilistic elements,

or real-time mechanics that would require sophisticated implementation techniques.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Reflectiveness, Curiosity

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

231© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-GMD-02: Enhance existing rule-based logic to control Non-Playable Characters (NPC).

Boundary
Statement(s)

Students should be able to read and understand rule-based code controlling Non-Playable Character

(NPCs). They should identify strengths and limitations of the controlling logic and suggest and

implement improvements in the algorithm. For example, students might analyze a simple rule-based

NPC, such as a guard that patrols, chases, or attacks based on player distance, and explain how

each conditional statement controls its behavior. They would then identify gaps, like the NPC never

retreating or reacting to low health, and modify the algorithm to add more realistic or strategic

decision-making.

Students are not expected to implement AI-based systems nor formally evaluate algorithmic

limitations.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Computational Thinking: 7. Develop and use abstractions.

Disposition(s) Critical Thinking, Resourcefulness

S1-GMD-03: Create a storyboard to plan and communicate game narratives and interactive experiences.

Boundary
Statement(s)

Students should be able to create storyboards that visually outline the narrative flow and interactive

elements of a game. Their storyboards should illustrate key scenes, player choices, decision

points, and how the game responds to those choices. Storyboards should use simple sketches and

annotations to clarify on-screen actions, intended player interactions, and the emotions or reactions

the designer wants to evoke. The emphasis is on using storyboards as a planning and communication

tool. Basic, low-fidelity sketches that clearly convey the game’s structure and interactivity are

sufficient.

Students are not expected to create polished or artistically detailed drawings or depict every possible

branching path.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Disposition(s) Creativity

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

232© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-GMD-04: Develop an interactive experience to support gameplay.

Boundary
Statement(s)

Students should be able to design a cohesive game experience. The design should leverage the
unique strengths of various input devices to create an enriched or unique interactive experience, not
simply map controls one-to-one. Students should use existing or commonly available hardware in
their designs. For example, students could design a game where a player uses a joystick for character
movement while also using a touchscreen or keyboard to manage a separate inventory system,
creating a multi-modal interface.

Students are not expected to create new input devices or build drivers to support their designs.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Creativity, Critical Thinking

S1-GMD-05: Conduct a basic usability test on a game by identifying key user flows, collecting observable
data, and translating that data into actionable design revisions.

Boundary
Statement(s)

Students should be able to conduct a basic usability test on a game by identifying key user flows,
observing how users interact with the experience, and recording meaningful data about where users
succeed or struggle. They should use this evidence to recommend clear, actionable design revisions.
As part of the testing process, students should consider whether any aspects of the game create
barriers for certain users or unintentionally introduce bias or exclusion. For example, students might
examine whether an onboarding tutorial is confusing, whether controls are difficult for users with
different abilities, or whether characters or narrative elements reinforce stereotypes. Students should
use feedback from a small group of peers with varied perspectives or abilities to propose design
improvements that enhance usability and inclusivity.

Students are not expected to run large-scale user studies, use professional usability-testing tools, or
conduct formal accessibility or ethical audits.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Reflectiveness, Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

233© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-GMD-06: Create a user-friendly interface for a game, considering accessibility, usability, and aesthetics.

Boundary
Statement(s)

Students should be able to design and prototype user interfaces (UIs) that are not only functional

but also intuitive, aesthetically pleasing, and accessible to a diverse range of users. They should

understand how design choices for interactive media, such as button placement, color schemes,

and font readability, impact the user experience. Students should go beyond basic user interaction

and demonstrate a more sophisticated application of design principles. For example, students

could design and prototype a UI for a simple mobile game that includes a colorblind-friendly mode,

adjustable font sizes for readability, and clear, universally recognized icons.

Students are not expected to implement complex, dynamic UIs that require advanced knowledge of

front-end frameworks or backend data management.

Pillar(s) and
Practice(s)

Computational Thinking: 8. Create computational artifacts.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Creativity, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

234© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-GMD-07: Describe the key architectural features of modern GPUs and their implications for game
development.

Boundary
Statement(s)

Students should be able to describe at least two key architectural features of modern GPUs

and explain how each one directly impacts game development. Students should demonstrate a

conceptual understanding of the main architectural components and how they influence game

design and performance that goes beyond defining a GPU. For example, students could describe

the large number of specialized cores or stream processors that allow a GPU to handle thousands

of calculations simultaneously, enabling complex lighting and particle effects in games. They could

also explain the importance of dedicated, high-bandwidth memory (VRAM) in GPU architecture for

efficiently loading and rendering high-resolution textures.

Students are not expected to understand the low-level microarchitecture of specific GPU

manufacturers or perform hardware-level analysis.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

235© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-GMD-08: Analyze the ethical implications of copyright and intellectual property in game development.

Boundary
Statement(s)

Students should be able to analyze the ethical and social implications of copyright and intellectual
property in games, applying their understanding to common scenarios (e.g., modding, fan art, using
third-party assets). They should be able to articulate the balance between a creator’s right to their
work and a community’s desire to build upon that work, specifically examining how fair use doctrines
and Creative Commons licensing models provide legal and ethical frameworks for this interaction.
For example, students might analyze a case where a game company issues a cease and desist order to
a fan-made game and discuss the ethical arguments for and against the company’s action, taking into
account principles of fair use and the potential for Creative Commons alternatives.

Students are not expected to review laws or contracts.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational technologies.

Inclusive Collaboration: 3. Communicate effectively about computing.

Disposition(s) Reflectiveness, Resourcefulness

S1-GMD-09: Collaborate effectively within diverse teams to plan, develop, and iterate on game
development projects.

Boundary
Statement(s)

Students should be able to collaborate effectively within a team to plan, develop, and iterate on a
game development project by defining roles, setting clear objectives and milestones, and establishing
a version control system (e.g., Git) for managing project assets and code. They should collaboratively
implement core game mechanics, integrate assets, and use an agile workflow (e.g., short sprints and
regular check-ins) to maintain forward progress. Team members should collect feedback from peers
or target users, identify bugs, and refine the game design and code based on these critiques.

Students are not expected to implement project management methodologies typically used in
professional studios (e.g., advanced Scrum or Kanban techniques) or design and create all assets from
scratch, provided they appropriately credit third-party or open-source assets used in the project.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Disposition(s) Sense of Belonging in CS, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

236© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

Specialty II

S2-GMD-01: Apply responsible design principles to the design and development of engaging and
meaningful game experiences.

Boundary
Statement(s)

Students should be able to design and develop game experiences by applying responsible design

principles (e.g., ethical considerations, inclusivity and accessibility, sustainability, transparency

and trust) that specifically address player motivation, emotion, and behavior, considering a diverse

range of human identities. Students should develop game experiences that emphasize inclusive

design decisions, iterative development, and user empathy. For example, students could design a

simulation tailored for a specific audience, or develop an interactive product with adaptive controls

or alternative input methods that enhance accessibility and engagement.

Students are not expected to conduct research studies to measure user motivation, emotion, or

behavior, nor are they required to develop interactive game engines or game production pipelines.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Creativity, Critical Thinking, Resourcefulness, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

237© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-GMD-02: Construct a rule-based AI to control an NPC.

Boundary
Statement(s)

Students should be able to create a functional, rule-based AI for a Non-Playable Character (NPC) using

programming or visual scripting. Students’ implementation must be based on a recognized AI method

(e.g., finite-state machine, behavior tree). Students should implement an AI that can transition between

different behaviors based on specific, pre-defined conditions. For example, students could implement

a simple AI for a guard NPC that switches from a “Patrolling” state to a “Chasing” state when the player

enters its line of sight, and then to an “Attacking” state when the player is within a certain distance.

Students are not expected to implement machine learning models or neural networks to control

NPCs. Students are not expected to create an AI that learns from the player or adapts its behavior in

non-deterministic ways.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Persistence, Critical Thinking

S2-GMD-03: Implement basic 2D and 3D animations for game assets using keyframing and foundational
animation principles.

Boundary
Statement(s)

Students should be able to create short, purposeful animations for game assets by applying

keyframing and principles of animation such as anticipation, squash and stretch, and timing. The

animations can be for either 2D sprites or 3D models. The goal is to make the assets feel dynamic

and believable within a game. For example, a student could animate a simple 2D or 3D character

performing an action, such as jumping, where the animation shows the character “squashing” down

before the jump (anticipation) and “stretching” as it reaches its peak height (squash and stretch).

Students are not expected to create complex, cinematic animations or master advanced techniques

like inverse kinematics, character rigging, or cloth simulation.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Creativity, Persistence

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

238© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-GMD-04: Evaluate game interactions that use a variety of input devices to enhance immersion and
player experience.

Boundary
Statement(s)

Students should be able to evaluate a game that uses a variety of input devices, specifically to

measure and improve the player’s sense of immersion and overall experience. Students should take a

methodical, iterative approach to collecting both quantitative (e.g., number of errors) and qualitative

(e.g., player feedback) data to identify strengths and weaknesses in the input design. Students should

then use the data to inform design changes. For example, a student could evaluate a game that uses a

motion controller by observing players’ physical reactions and gathering their verbal feedback on the

“feel” and responsiveness of the controls, then use that information to refine the sensitivity or timing

of the inputs.

Students are not expected to use statistical analysis. Students are not expected to collect data from

large numbers of participants or recruit participants from outside the school context. Students are

not required to produce formal research reports.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Reflectiveness, Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

239© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-GMD-05: Compare two versions of the same game to determine which version performs better based
on defined metrics.

Boundary
Statement(s)

Students should be able to design and execute a usability study, like A/B testing, to compare two

versions of a single game element (e.g., a button’s color, a level’s layout, a character’s ability) while

considering responsible design principles (e.g., ethical considerations, inclusivity and accessibility,

sustainability, transparency and trust). Students should use study findings to make a data-driven

decision on the game’s design. For example, a student could run a test with two small, distinct groups

of players to determine which of two different tutorial pop-ups results in a higher completion rate of

the first level.

Students are not expected to work with large-scale data sets, use statistical analysis software, or

implement testing on a live product.

Pillar(s) and
Practice(s)

Computational Thinking: 6. Define computational problems.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Critical Thinking, Persistence, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

240© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-GMD-06: Explain the role of graphics processing units (GPUs) in game development, including their
impacts on rendering performance, visual fidelity, and the overall gaming experience.

Boundary
Statement(s)

Students should be able to explain the fundamental difference between a Central Processing Unit

(CPU) and a Graphics Processing Unit (GPU), and articulate how the GPU’s architecture, particularly

its reliance on parallel processing, makes it uniquely suited for the task of rendering. They should

understand the GPU’s role in the gaming pipeline and connect this understanding to tangible impacts

on a game’s visual presentation (e.g., complexity of lighting, quality of textures, fluidity of animation).

For example, students could describe how a GPU’s thousands of cores can simultaneously calculate

the shading for millions of individual pixels on a screen, enabling realistic lighting and shadows that

would be impossible for a sequential-processing CPU to achieve in real-time.

Students are not expected to understand the low-level architecture of specific GPU models, write

platform-specific code, or perform hardware benchmarking.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

241© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-GMD-07: Apply ethical principles in the design and development of games.

Boundary
Statement(s)

Students should create a functional game that demonstrates ethical design principles by integrating

accessibility features, promoting inclusivity, avoiding bias, and protecting user well-being and

data. Students should apply these principles from the beginning of the design process rather

than adding them afterward. Students should also be able to justify their design choices from an

ethical standpoint. For example, students could design a game with colorblind-friendly palettes

and remappable controls (accessibility), avoid stereotypical character representations (inclusivity

and avoiding bias), include content warnings for sensitive topics (user well-being), and implement

appropriate data collection practices (data protection).

Students are not expected to address every possible accessibility need or ethical consideration, nor

are they expected to create polished, market-ready games.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Reflectiveness, Creativity

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

242© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S2-GMD-08: Collaborate effectively in a project team by defining and executing assigned roles,
communicating clearly, and managing shared resources to deliver a game project.

Boundary
Statement(s)

Students should participate in a collaborative team environment to complete a game project by

communicating effectively, managing their assigned roles and responsibilities, and contributing to

shared decision-making. Students should listen to and integrate teammates’ ideas, work through

disagreements constructively, and be willing to contribute outside their primary expertise when it

benefits the team. For example, a student who prefers coding might help brainstorm art concepts

with a teammate who is more visually inclined, demonstrating willingness to engage with different

aspects of game development to support the team’s goals.

Students are not expected to use formal project management methodologies or maintain perfect

team dynamics throughout the project.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Inclusive Collaboration: 5. Act responsibly in computing collaborations.

Disposition(s) Persistence, Sense of Belonging in CS

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

243© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

X + CS

S1-XCS-01: Identify and explain connections between CS concepts and practices and those from a non-CS
discipline (X).

Boundary
Statement(s)

Students should be able to identify and explain, at a conceptual level, how foundational computer

science principles, such as data representation, algorithmic thinking, or abstraction, serve as can

support understanding or problem-solving within a non-CS field (X) like economics, linguistics, or

art history. For a course paired with a literature class, this could look like students drawing a parallel

between the concept of procedural abstraction in programming and the role of narrative patterns in

literature such as a “Hero’s Journey”.

Students are not expected to develop software or models that computationally solve advanced

domain-specific problems.

Pillar(s) and
Practice(s)

Inclusive Collaboration: 3. Communicate effectively about computing.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Creativity

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

244© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-XCS-02: Apply computational thinking to reinterpret a problem and design a solution within a non-CS
discipline (X).

Boundary
Statement(s)

Students should apply computational thinking skills to a problem from a non-CS discipline (X) and

design a feasible computational solution. Students should identify a problem from X that can be

solved computationally, decompose it into sub-problems, extract common features and patterns

(i.e., abstraction), and create step-by-step procedures (i.e., algorithms) to solve it. For example,

Biology students studying population dynamics could predict how a prey population will change

over time by identifying key variables (e.g., birth rate, predation rate, available resources, carrying

capacity), decomposing the problem into sub-problems (e.g., calculating population growth during

different seasons, accounting for predator-prey interactions, determining resource limitations), and

designing an algorithm that models population changes across multiple generations based on these

factors. Students should focus on the design process and generating design documentation (e.g.,

pseudocode, flowcharts).

Students are not expected to create, test, and refine a full computational solution.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Computational Thinking: 8. Create computational artifacts.

Disposition(s) Critical Thinking, Persistence, Resourcefulness

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

245© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-XCS-03: Investigate a computer science innovation in a non-CS discipline (X).

Boundary
Statement(s)

Students should investigate a specific computer science innovation, detailing the foundational

computing concepts involved, how it was developed, and its real-world impact on the chosen

non-CS discipline. For example, students could investigate how machine learning algorithms are used

in medical imaging to detect tumors, detailing the training process using labeled image datasets,

the pattern recognition methods that identify abnormalities, and how this innovation has improved

diagnostic accuracy and speed.

Students are not expected to reproduce the innovation, implement it from scratch, or conduct

comprehensive analyses of its societal, economic, or policy implications beyond describing its direct

impact on the discipline.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 1. Use computing for positive social impact.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Resourcefulness

S1-XCS-04: Model relationships within a non-CS discipline using data, visualizations, and computational
methods.

Boundary
Statement(s)

Students should select and apply computational methods (e.g., specific machine learning algorithms,

statistical tests) to structure, analyze, and visualize a substantial, real-world dataset from a non-CS

discipline (X), revealing patterns and relationships within that discipline. For example, Political

Science students could transform raw, disorganized voting records into a structured database, apply

a clustering algorithm to identify voter groups, and create a network graph to visualize relationships

between political actors or the flow of political influence.

Students are not expected to develop novel computational methods or algorithms, nor are they

expected to work with datasets so large that they require distributed computing resources.

Pillar(s) and
Practice(s)

Computational Thinking: 7. Develop and use abstractions.

Human-Centered Design: 10. Understand and involve diverse users in design decisions.

Disposition(s) Reflectiveness, Resourcefulness, Critical Thinking

Revised PK–12 Computer Science Standards: Draft 3.0	 Specialty Standards for High School

246© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

Focus Area

Software Development

Cybersecurity

Artificial Intelligence

Physical Computing

Data Science

Game Development

X + CS

S1-XCS-05: Assess how well an algorithm solves problems within a non-CS discipline (X) by analyzing their
accuracy, efficiency, and relevance to the intended goal.

Boundary
Statement(s)

Students should select and apply appropriate metrics to evaluate an algorithm’s performance and

suitability for solving a specific problem in a non-CS field (X). Students should assess accuracy

(e.g., error rates, precision/recall for classification tasks), efficiency (e.g., runtime, memory usage,

scalability), and relevance (e.g., whether the algorithm addresses the actual problem requirements).

Students should be able to interpret complexity classifications, compare the efficiency of different

algorithmic approaches, and explain trade-offs between accuracy and efficiency in the context of

discipline X. For example, Healthcare students assessing a machine learning algorithm to predict

patient readmission risk could analyze its prediction accuracy on a test dataset, measure its runtime

when processing patient records, and evaluate whether it appropriately accounts for the clinical

factors that healthcare providers consider important.

Students are not expected to formally derive algorithmic complexity using Big O notation.

Pillar(s) and
Practice(s)

Ethics and Social Responsibility: 2. Respect others’ rights when creating computational technologies.

Computational Thinking: 6. Define computational problems.

Disposition(s) Critical Thinking, Reflectiveness

Revised PK–12 Computer Science Standards: Draft 3.0	 References

247© 2025 Computer Science Teachers Association (CSTA). | BY-NC-SA 4.0

References

Association for Computing Machinery (ACM). (2018). ACM code of ethics and professional conduct. https://www.acm.org/code-of-ethics

Interaction Design Foundation (IDF). (n.d.a). Human-centered design (HCD). https://www.interaction-design.org/literature/topics/
human-centered-design

International Technology and Engineering Educators Association (ITEEA). (2020). Standards for technological and engineering literacy: The role of
technology and engineering in STEM education. https://www.iteea.org/stel

K–12 Computer Science Framework. (2016). http://www.k12cs.org

Learning for Justice. (n.d.). Social justice standards: The Learning for Justice anti-bias framework. https://www.learningforjustice.org/frameworks/
social-justice-standards

National Governors Association Center for Best Practices (NGA Center) & Council of Chief State School Officers (CCSSO). (2010). Common Core
State Standards for Mathematics. https://corestandards.org/wp-content/uploads/2023/09/Math_Standards1.pdf

National Institute of Standards and Technology (NIST). (2021). Human centered design (HCD). https://www.nist.gov/itl/iad/
visualization-and-usability-group/human-factors-human-centered-design

NGSS Lead States. (2013). Next generation science standards: For states, by states. The National Academies Press. http://www.nextgenscience.org

Partnership for 21st Century Skills. (2009). P21 framework definitions. https://files.eric.ed.gov/fulltext/ED519462.pdf

Tedre, M., Denning, P. J., & Toivonen, T. (2021). CT 2.0. In Proceedings of the 21st Koli Calling International Conference on Computing Education
Research (Koli Calling ‘21). Association for Computing Machinery. https://doi.org/10.1145/3488042.3488053

Vinney, C. (2023). What is human-centered design? Everything you need to know. UX Design Institute. https://www.uxdesigninstitute.com/blog/
what-is-human-centered-design/

https://www.acm.org/code-of-ethics
https://www.interaction-design.org/literature/topics/human-centered-design
https://www.interaction-design.org/literature/topics/human-centered-design
https://www.iteea.org/stel
http://www.k12cs.org
https://www.learningforjustice.org/frameworks/social-justice-standards
https://www.learningforjustice.org/frameworks/social-justice-standards
https://corestandards.org/wp-content/uploads/2023/09/Math_Standards1.pdf
https://www.nist.gov/itl/iad/visualization-and-usability-group/human-factors-human-centered-design
https://www.nist.gov/itl/iad/visualization-and-usability-group/human-factors-human-centered-design
http://www.nextgenscience.org
https://files.eric.ed.gov/fulltext/ED519462.pdf
https://doi.org/10.1145/3488042.3488053
https://www.uxdesigninstitute.com/blog/what-is-human-centered-design/
https://www.uxdesigninstitute.com/blog/what-is-human-centered-design/

	Revised PK–12 Computer Science StandardsDRAFT 3.0
	Table of Contents
	Vision
	Every Student Prepared for a World Powered by Computing

	Defining Computer Science
	About the CSTA PK–12 Standards
	Intended Uses

	Revision Overview
	People
	Process
	Priorities for the 2026 CSTA PK–12 Standards
	AI is Part of CS
	A Sociotechnical Approach to Ethics and Impacts of Computing

	Additional Context for Reviewers
	Navigating the Standards
	Foundational Standards
	Specialty Standards

	Components of a Standard
	Example of All Components for a Security Standard

	Concepts
	 Algorithms & Design
	 Programming
	 Data & Analysis
	 Systems & Security
	 Computing & Society

	Pillars & Practices
	Ethics & Social Responsibility
	Inclusive Collaboration
	Computational Thinking
	Human-Centered Design

	Dispositions
	What Are Dispositions?

	Foundational Standards for PK–12
	Naming Conventions for Foundational Standards
	Algorithms & Design
	Programming
	Data & Analysis
	Systems & Security
	Computing & Society

	Specialty Standards for High School
	What are Specialty Standards?
	How do Specialty Standards Differ From Foundational Standards?
	How to Implement Specialty Standards
	The Relationship Between Specialty Standards and Career and Technical Education (CTE)
	Naming Conventions for Specialty Standards
	Software Development
	Cybersecurity
	Artificial Intelligence
	Physical Computing
	Data Science
	Game Development
	X + CS

	References

